

Welcome to UncertainSCI’s documentation!

[image: _images/UncertainSCI.png]
 [https://www.sci.utah.edu/cibc-software/uncertainsci.html]

 Getting Started with UncertainSCI

Getting Started with UncertainSCI

System Requirements

Requires Python 3 and modules listed in requirements.txt

Getting UncertainSCI

The easyiest way to get UncertainSCI is to use pip. Just run pip install UncertainSCI or python -m pip install UncertainSCI and pip will download and install the latest version of UncertainSCI. This will also try to download and install the relevent dependencies too.

To get pip, see its documentation [https://pip.pypa.io/en/stable/installation/].

The source code for UncertainSCI can be downloaded from the Github page [https://github.com/SCIInstitute/UncertainSCI].

Installing UncertainSCI From Source

UncertainSCI can be built from source code using the setup.py script. To call this script, navagate to the source root directory in a terminal window and run the command pip install . or python -m pip install .

UncertainSCI Overview

Users can evaluate the effect of input uncertainty on forward models with UncertainSCI’s implementation of polynomial Chaos expansion (PCE). The pipeline for the process is shown in the following image:

[image: User pipeline for UncertainSCI. After the user inputs parameter distributions, UncertainSCI will compute an efficient sampling scheme. The parameter samples are run through the targeted modeling pipeline, which can be implemented in external software tools. The computed solutions are collected and compiled into relevant statistics with UncertainSCI.]

Before Using UncertainSCI

In order to run UncertainSCI, it must be supplied with the input parameter distributions, a model that will run the parameters in question, and a way to collect model solutions for use in PCE. The model itself can be implemented in Python or in another software, as appropriate, as parameter sets and solutions can pass between UncertainSCI and modeling software via hard disk. Models with high resolution solutions should could be cost prohibitive to run with PCE, so users should consider derived metrics or solutions subsets (regions of interest) for UQ.

Users must chose the input distributions for their modeling pipeline, which may significantly impact the output distributions. The indendent application will determine the best distributions to use, yet we suggest that the users use all information available to inform their choices. Published literature and previously generated data are, of course, more credible, but users may need to rely on their own intuition and observed trends with the targeted model.

PCE computation time

Since UncertainSCI uses PCE to compute UQ, it is worth noting the impact of some PCE parameters on computational time. Mostly, the time needed to compute UQ via PCE is limited by the evalutated model, especially in bioelectric field and other 3D simulation applications. PCE attempts to reduce computational cost by limiting the number of parameter samples are needed to estimated the model output distributions, as the fewer parameter sets needed, the few times the model needs to be run. Since PCE is estimating a polynomial to represent the output distribution, some user choices will affect the sample size

Number of parameters modeled in the PCE will affect the number of samples needed to estimate the model uncertainty by increasing the dimensionality of the estimated polynomial. Higher demensions require more sampling points to accurately capture, so will lead to higher computation times. However, parameters must be evaluated in the PCE together to determine the effect of their interaction in the targeted model.

polynomial (PCE) order affects the PCE samples needed for UQ by defining the complexity captured by PCE. As in 1D, polynomials with higher order are able to capture higher variability within the domain. Therefore, models with high complexity, i.e., significant response to variation in the parameter space, should use higher polynomial orders. However, more parameter samples are required to estimate higher polynomials, increasing the number of times the model must be run.

Distribution type of the parameters may effect the number of samples, but to a minor level when compared to number of parameters and polynomial order.

Running UncertainSCI

Running UncertainSCI for Sample Generation

With the model setup, the user will need to setup the input parameter distribution using UncertainSCI’s distribution datatype. While there are a few distribution types to choose from, the Beta distribution is a common choice. If we had three input parameters, we can define a different beta distribution for each, thus:

from UncertainSCI.distributions import BetaDistribution

Nparams = 3
Three independent parameters with different Beta distributions
p1 = BetaDistribution(alpha=0.5, beta=1.)
p2 = BetaDistribution(alpha=1., beta=0.5)
p3 = BetaDistribution(alpha=1., beta=1.)

For the default case used in here, the range of each parameter is [0 , 1].

After the input parameters are set, we can generate a parameter sampling that will most efficiently estimate the UQ. In order to do this, the user must create a PCE object with the distributions. However, the user must also define a polynomial order. This defined as an integer:

Polynomial order
order = 5

Now we can create the PCE object and generate parameter samples:

from UncertainSCI.pce import PolynomialChaosExpansion

Generate samples first, then manually query model, then give model output to pce.
pce = PolynomialChaosExpansion(distribution=[p1, p2, p3], order=order, plabels=plabels)
pce.generate_samples()

To use the samples generated by this PCE instantiation, users can access it through the object:

import numpy as np # output is np array
pce.samples

Which returns a numpy array of size MxN where N is the number of parameters and M is the number of samples (determined by uncertainSCI).

Running Parameter Samples for Model Outputs

While this is heavily dependent on the modeling pipeline, the generated samples can be save to disk to run in an external pipeline:

np.savetxt(filename,pce.samples)

or called within python:

for ind in range(pce.samples.shape[0]):
 model_output[ind, :] = model(pce.samples[ind, :])

If the samples are saved to disk to run asyncronously, they will need to be added to a PCE object if the original one is destroyed. This happens when it is run as a script, then rerun with data and is acheived with:

pce.set_samples(np.loadtxt(filename))

instead of running pce.generate_samples(). Similarly, the output results from the simulation will need to be a numpy array of MxP where M is the number of parameter sets, and P is the size of the solution array. 2D and 3D solutions can be flattened into a 1D array and collated into this solution array, then reshaped for visualization.

PCE and the Output Statistics

With the appropriate distributions and samples added to the PCE object and model output collect, the estimator and output statistics can be generated. First, the PCE must be built:

pce.build(model_output=model_output)

Then, output statistics can be return:

mean = pce.mean()
stdev = pce.stdev()
global_sensitivity, variable_interactions = pce.global_sensitivity()
quantiles = pce.quantile([0.25, 0.5, 0.75]) # 0.25, median, 0.75 quantile

There are also built in ploting functions (with matplotlib) for 1D data:

from matplotlib import pyplot as plt
mean_stdev_plot(pce, ensemble=50)
quantile_plot(pce, bands=3, xvals=x, xlabel='x')
piechart_sensitivity(pce)

plt.show()

The API documentation explains the implementation of UncertainSCI in more detail.

Running UncertainSCI Demos

There are a number of demos included with UncertainSCI to test it’s installation and to demonstrate its use. The previous description can be found as a notebook with some more details here and as a script in demos/build_pce.py.

The demo scripts can be a way to quickly test the installation. Make sure that UncertainSCI is installed, then simply call the script with python using the command python demos/build_pce.py. Other demos can be run similarily.

We have included a number of demos and tutorials to teach users how to use UncertainSCI with various examples.

 Support

Support

Questions?

If you have questions, please ask them on our public discussion board:
https://github.com/SCIInstitute/UncertainSCI/discussions

Or, you can ask them on our mailing list uncertainsci@sci.utah.edu. To subscribe:

	send an email to sympa@sci.utah.edu with subscribe uncertainsci in the body of the email.

	You will receive an email requesting confirmation of the subscription.

	Reply (no text needed) to the email to confirm submission.

Now you’re on the list and will receive updates and questions. You can also submit questions to the list once subscribed

To unsubscribe from the mailing list:

	send an email to sympa@sci.utah.edu with unsubscribe uncertainsci in the body of the email.

	You will receive a confirmation email confirming the unsubcription.

You can also submit questions to our private support email at cibc-contact@sci.utah.edu

Bugs and Requests

If you find any bugs or have any feature requests, please create an issue on GitHub: https://github.com/SCIInstitute/UncertainSCI/issues

 Tutorials

Tutorials

Contents:

	Simple Example Showing UQ With PCE
	Model Parameter setup

	Forward Model

	Running PCE in UncertainSCI

	Output Visualizations

	Demos
	Simple example with boxplots

	PCE Statistics

	Adaptive PCE
	Adaptive PCE Setup

	Running Adaptive PCE

	Output Statistics

	Monte Carlo Statistics

	Visualize Statistics

	Built-in forward models
	Overview

	Algebraic models

	Differential equation models

	Using UncertainSCI with External Simulation Software
	SCIRun/UncertainSCI ECG uncertainty due to cardiac postion

	Defining random parameters
	Overview

	Types of distributions

	Template for Tutorial
	Overview

	Chapter Name

 Simple Example Showing UQ With PCE

Simple Example Showing UQ With PCE

This example shows some basic functionality of UncertainSCI using the polynomial Chaos emulators (PCE) to quantify uncertainty in a 1D function. It is essentially identical to demos/build_pce.py and uses a 1D Laplacian ODE as a model with three parameters

[1]:

import numpy as np
from matplotlib import pyplot as plt

from UncertainSCI.distributions import BetaDistribution
from UncertainSCI.model_examples import laplace_ode_1d
from UncertainSCI.pce import PolynomialChaosExpansion

from UncertainSCI.vis import piechart_sensitivity, quantile_plot, mean_stdev_plot

Model Parameter setup

The first step in running UncertainSCI is to specify the parameter distributions and the capacity of the PCE model (polynomial order).

Distributions

[2]:

Number of parameters
Nparams = 3

Three independent parameters with different Beta distributions
p1 = BetaDistribution(alpha=0.5, beta=1.)
p2 = BetaDistribution(alpha=1., beta=0.5)
p3 = BetaDistribution(alpha=1., beta=1.)

plabels = ['a', 'b', 'z']

Polynomial Order

How complicated the model is

[3]:

Polynomial order
order = 5

Forward Model

\[-\frac{d}{dx} a(x,p) \cdot \frac{d}{dx} u(x,p) = f(x)\]

with \(x\) in \([-1,1]\) discretized with \(N\) points, where \(a(x,p)\) is a Fourier-Series-parameterized diffusion model with the variables \(p_j=[a, b, z]\). See the laplace_ode_1d method or UncertainSCI/model_examples.py for details.

[4]:

N = 100
x, model = laplace_ode_1d(Nparams, N=N)

Running PCE in UncertainSCI

The steps to running PCE in UncertainSCI are - create PCE object - generate parameter samples - run parameter sets in the forward model - give model output to PCE - compute output statistics

Create PCE object and Build Sample Set

With the parameter distribution created and polynomial order set, we can create the PCE object and generate a parameter set that will efficiently and accurately estimate the output distribution of the model. UncertainSCI adds an extra 10 parameter sets as a precaution.

[5]:

pce = PolynomialChaosExpansion(distribution=[p1, p2, p3], order=order, plabels=plabels)
pce.generate_samples()

print('This queries the model {0:d} times'.format(pce.samples.shape[0]))

Precomputing data for Jacobi parameters (alpha,beta) = (-0.500000, 0.000000)...Done
This queries the model 66 times

Run Parameter Sets in the Forward Model

We query each parameter set in sequence to run in our Laplacian ODE model and collect the results

[6]:

model_output = np.zeros([pce.samples.shape[0], N])
for ind in range(pce.samples.shape[0]):
 model_output[ind, :] = model(pce.samples[ind, :])

Build PCE from Model Outputs

With the collated model solutions, the output distributions can be estimated using PCE

[7]:

pce.build(model_output=model_output)

[7]:

array([1.75571628e-37, 5.64860235e-17, 2.10743598e-16, 4.30180091e-16,
 6.73615485e-16, 8.98426649e-16, 1.06808811e-15, 1.15833221e-15,
 1.16057868e-15, 1.08209494e-15, 9.43231789e-16, 7.72726181e-16,
 6.02299430e-16, 4.61625174e-16, 3.74362183e-16, 3.55551159e-16,
 4.10403164e-16, 5.34387196e-16, 7.14489737e-16, 9.31478341e-16,
 1.16290358e-15, 1.38643597e-15, 1.58302359e-15, 1.73934375e-15,
 1.84914225e-15, 1.91328322e-15, 1.93860602e-15, 1.93592175e-15,
 1.91761943e-15, 1.89536658e-15, 1.87829599e-15, 1.87191182e-15,
 1.87777401e-15, 1.89387162e-15, 1.91549769e-15, 1.93639635e-15,
 1.94995954e-15, 1.95029022e-15, 1.93300605e-15, 1.89571844e-15,
 1.83817752e-15, 1.76211869e-15, 1.67087823e-15, 1.56886365e-15,
 1.46096875e-15, 1.35201633e-15, 1.24629417e-15, 1.14722754e-15,
 1.05720583e-15, 9.77557484e-16, 9.08648189e-16, 8.50065649e-16,
 8.00849025e-16, 7.59724059e-16, 7.25312441e-16, 6.96294722e-16,
 6.71517851e-16, 6.50048858e-16, 6.31183955e-16, 6.14427000e-16,
 5.99452329e-16, 5.86065283e-16, 5.74169862e-16, 5.63747820e-16,
 5.54848130e-16, 5.47581156e-16, 5.42108762e-16, 5.38620514e-16,
 5.37288102e-16, 5.38194279e-16, 5.41239598e-16, 5.46038218e-16,
 5.51822165e-16, 5.57379403e-16, 5.61052914e-16, 5.60824129e-16,
 5.54493189e-16, 5.39951481e-16, 5.15520386e-16, 4.80308188e-16,
 4.34519740e-16, 3.79646212e-16, 3.18469931e-16, 2.54843985e-16,
 1.93246402e-16, 1.38157999e-16, 9.33612879e-17, 6.12921066e-17,
 4.25845893e-17, 3.59260824e-17, 3.82825975e-17, 4.54770963e-17,
 5.30202417e-17, 5.70278062e-17, 5.50298773e-17, 4.64948566e-17,
 3.29537537e-17, 1.77021507e-17, 5.15427668e-18, 0.00000000e+00])

Compute Output Statistics

With the PCE built, statistics can be calculated for each point in the solution space (x).

[8]:

Postprocess PCE: statistics are computable:
mean = pce.mean()
stdev = pce.stdev()
global_sensitivity, variable_interactions = pce.global_sensitivity()
quantiles = pce.quantile([0.25, 0.5, 0.75]) # 0.25, median, 0.75 quantile

Output Visualizations

To help understand and interpret UQ statistics, we’ve included some plotting tools for 1D data.

[9]:

mean_stdev_plot(pce, ensemble=50)

[9]:

<AxesSubplot:title={'center':'Mean $\\pm$ standard deviation'}, xlabel='x'>

[image: ../../_images/tutorials_notebooks_build_pce_17_1.png]

[10]:

quantile_plot(pce, bands=3, xvals=x, xlabel='x')

[10]:

<AxesSubplot:title={'center':'Median + quantile bands'}, xlabel='x'>

[image: ../../_images/tutorials_notebooks_build_pce_18_1.png]

[11]:

piechart_sensitivity(pce)

[11]:

<AxesSubplot:title={'center':'Sensitivity due to variable interactions'}>

[image: ../../_images/tutorials_notebooks_build_pce_19_1.png]

 Demos

Demos

Contents:

	Simple example with boxplots
	Overview

	Building the emulator

	Querying the emulators

	Boxplots

	PCE Statistics
	Building PCE emulators

 Simple example with boxplots

Simple example with boxplots

 PCE Statistics

PCE Statistics

Building PCE emulators

One of the main tools in UncertainSCI is the ability to build polynomial Chaos expansions. (See Polynomial Chaos Expansions for an overview of methodology.) In this first demo, we will investigate the demos/build_pce.py file and its output. The main goal of this demo is to build a PCE emulator for predicting variation in a model with respect to parameters.

To construct a PCE emulator, one needs to specify both a probability distribution on the parameters, and the expressivity of the PCE model.

In this example, we define a probability distribution over 3 parameters. We model these parmaeters as independent and uniform, each over the interval \([0,1]\):

demos/build_pce.py: Specifying a probability distribution

Number of parameters
dimension = 3

Specifies 1D distribution on [0,1] (alpha=beta=1 ---> uniform)
alpha = 1.
beta = 1.
dist = BetaDistribution(alpha=alpha, beta=alpha, dim=dimension)

Here the dimension indicates that we have 3 random parameters. We have used the BetaDistribution class to define a Beta probability distribution (see Distributions) with dimension (3) independent variables. Since alpha and beta are scalars, they are assumed to apply for each dimension. The values alpha=1 and beta=1 correspond to the uniform density, and the default domain of the Beta distribution is \([0,1]\).

Second, we need to specify the expressivity of the PCE model, which in turns will translate into how much data we’ll need to gather from the model. Expressivity is defined by the type of polynomial space; for now, we’ll impose a degree-5 total degree space:

demos/build_pce.py: Specifying expressivity of the PCE

 order = 5
 indices = TotalDegreeSet(dim=dimension, order=order)

See Polynomial Chaos Expansions for more about expressivity and polynomial spaces. With the distribution and the expressivity defined, we can instantiate the PCE object:

pce = PolynomialChaosExpansion(indices, dist)

We must now train the PCE on the model. For this simple, example, we take the model defined as

\[model(x,p) = \sin \left[\pi (p_1 + p_2^2 + p_3^3) x \right],\]

where \(x\) is one-dimensional physical space, and \((p_1, p_2, p_3)\) are our three parameters. We create this modeling by specifying the discrete spatial grid over which \(x\) is defined. Our model is created via

demos/build_pce.py: Creating a parameterized model

N = int(1e2) # Number of degrees of freedom of model
model = sine_modulation(N=N)

This syntax implicity assumes N spatial grid points equispaced on the interval \([-1,1]\). The function model takes as input a length-3 vector representing a parameter value for \((p_1, p_2, p_3)\), and outputs a length-100 vector representing the value of the model output on the N spatial points at that parameter.

The simplest way to build the PCE emulator is to input the model to the build method of the pce object:

lsq_residuals = pce.build(model)

This call queries the model several times at different parameter locations, and uses this data to build a PCE emulator. The parameter locations along with the associated model data are accessible via

demos/build_pce.py: Accessing parameter locations and data from a built PCE emulator

parameter_samples = pce.samples
model_evaluations = pce.model_output

However, the main utility of having a now-built PCE emulator is that statistics (with respect to the parameters \((p_1, p_2, p_3)\)) are easily computable. For example, the mean and standard deviation (which are functions of the spatial variable \(x\)) can be computed as

demos/build_pce.py: Computing the mean and standard deviation of a PCE emulator

mean = pce.mean()
stdev = pce.stdev()

More advanced operations are available. Variance-based sensitivity analysis can provide a means for ranking parameter importance. We can compute the so-called total sensitivity index, which measures the importance of each variable on a scale of 0 to 1, and also the global sensitivity index, which measures the relative importance that each subset of variables has to the overall variance:

demos/build_pce.py: Computing sensitivity indices

Power set of [0, 1, 2]
variable_interactions = list(chain.from_iterable(combinations(range(dimension), r) for r in range(1, dimension+1)))

total_sensitivity = pce.total_sensitivity()
global_sensitivity = pce.global_sensitivity(variable_interactions)

Finally, we can also compute quantiles (level sets of the cumulative distribution function) of the model output.

demos/build_pce.py: Computing quantiles and the median

Q = 4 # Number of quantile bands to plot
dq = 0.5/(Q+1)
q_lower = np.arange(dq, 0.5-1e-7, dq)[::-1]
q_upper = np.arange(0.5 + dq, 1.0-1e-7, dq)
quantile_levels = np.append(np.concatenate((q_lower, q_upper)), 0.5)

quantiles = pce.quantile(quantile_levels, M=int(2e3))
median = quantiles[-1,:]

The remainder of build_pce.py contains (a) simulations that compare PCE against methods using (much more expensive) Monte Carlo sampling, and (b) for visualizing the output. In particular, the following images are shown by running build_pce.py. Note: The procedures are randomized so that the output figures shown here may slightly vary with respect to results generated on a local machine.

[image: ../../_images/buildpce-meanstdev.png]

Graphical output from demos/build_pce.py showing the predicted mean and standard deviation as a function of the spatial variable \(x\), along with a comparison against Monte Carlo methods.

[image: ../../_images/buildpce-mccomparison.png]

Graphical output from demos/build_pce.py compared PCE output with medians and quantile bands against results from a more expensive Monte Carlo simulation.

[image: ../../_images/buildpce-sensitivity.png]

Graphical output from demos/build_pce.py showing variance-based global sensitvity indices, measuring the relative importance of subsets of parameters.

 Adaptive PCE

Adaptive PCE

This notebook is an example of UncertainSCI’s functionality to adaptively determine the needed polynomial order of a given model and parameter set. This example is equivalent to demos/adapt_pce.py

[1]:

from itertools import chain, combinations

import numpy as np
from matplotlib import pyplot as plt
import matplotlib.animation as animation

from UncertainSCI.distributions import BetaDistribution
from UncertainSCI.model_examples import KLE_exponential_covariance_1d, \
 laplace_ode, laplace_grid_x
from UncertainSCI.indexing import TotalDegreeSet
from UncertainSCI.pce import PolynomialChaosExpansion
from UncertainSCI.utils.version import version_lessthan

some features work better with this option
%matplotlib notebook

Adaptive PCE Setup

Three things must be specified: - The physical model - A parameter distribution - The initial expressivity of the PCE (polynomial space)

Define Forward model

The model in this example is a 1D laplacian ODE. See the laplace_ode_1d method or UncertainSCI/model_examples.py for details.

\[-\frac{d}{dx} a(x,p) \cdot \frac{d}{dx} u(x,p) = f(x)\]

over \(x\) in \([-1,1]\), where \(a(x,p)\) is a parameterized diffusion model:

\[a(x,p) = \bar{x} + \sum_{j=1}^d \lambda_j p_j \phi_j(x)\]

where \(d\) is the dimension, (\(\lambda_j\), \(\phi_j\)) are eigenpairs of the exponential covariance kernel,

\[K(s,t) = e^{-|s-t|/a}.\]

The \(p_j\) are modeled as random variables.

[2]:

Number of parameters
dimension = 2

Define diffusion coefficient
a = 1.
b = 1. # Interval is [-b,b]
abar = lambda x: 1*np.ones(np.shape(x))
KLE = KLE_exponential_covariance_1d(dimension, a, b, abar)

diffusion = lambda x, p: KLE(x, p)

N = int(1e2) # Number of spatial degrees of freedom of model
left = -1.
right = 1.
x = laplace_grid_x(left, right, N)

model = laplace_ode(left=left, right=right, N=N, diffusion=diffusion)

Parameter Distributions

We are using two model parameters with the same beta distribution for this example.

[3]:

Specifies 1D distribution on [0,1] (alpha=beta=1 ---> uniform)
alpha = 1.
beta = 1.
dist = BetaDistribution(alpha=alpha, beta=beta, dim=dimension)

Initial Expressivity of the PCE

This example uses a different setup than you might see in other examples. Other setups will be equivalent for many non-adaptive cases, but it is useful to operate with the index set in this example. Another important distinction that is necessary for the adaptive case is supplying the model as a lambda function to the PCE object.

[4]:

Expressivity setup
order = 0
index_set = TotalDegreeSet(dim=dimension, order=order)
starting_indices = index_set.get_indices()

[5]:

Building the PCE
pce = PolynomialChaosExpansion(index_set, dist)
pce.build(model=model)
Nstarting_samples = pce.samples.shape[0]
initial_accuracy = pce.accuracy_metrics.copy()

Running Adaptive PCE

With the initial PCE setup, we can run adaptive method. This will attempt to find the best order to represent the uncertainty for the given model and parameter distributions. The method will add new samples as needed to minimize the residual error between iterations. This may take a few minutes to run from scratch.

[39]:

pce.adapt_robustness(max_new_samples=50)
residuals, loocvs, added_indices, added_samples = pce.adapt_expressivity(max_new_samples=100, add_rule=3)

new indices: 1, new samples: 4
old residual: 1.418e-09, old loocv: 4.334e-06
new residual: 1.424e-09, new loocv: 4.259e-06
new indices: 1, new samples: 4
old residual: 1.424e-09, old loocv: 4.259e-06
new residual: 1.446e-09, new loocv: 4.243e-06
new indices: 1, new samples: 4
old residual: 1.446e-09, old loocv: 4.243e-06
new residual: 9.789e-10, new loocv: 2.748e-06
new indices: 1, new samples: 4
old residual: 9.789e-10, old loocv: 2.748e-06
new residual: 9.637e-10, new loocv: 2.499e-06
new indices: 1, new samples: 4
old residual: 9.637e-10, old loocv: 2.499e-06
new residual: 6.000e-10, new loocv: 2.085e-06
new indices: 1, new samples: 4
old residual: 6.000e-10, old loocv: 2.085e-06
new residual: 2.177e-10, new loocv: 1.412e-06
new indices: 1, new samples: 4
old residual: 2.177e-10, old loocv: 1.412e-06
new residual: 9.205e-11, new loocv: 9.741e-07
new indices: 1, new samples: 4
old residual: 9.205e-11, old loocv: 9.741e-07
new residual: 6.980e-11, new loocv: 8.633e-07
new indices: 1, new samples: 4
old residual: 6.980e-11, old loocv: 8.633e-07
new residual: 6.651e-11, new loocv: 8.321e-07
new indices: 1, new samples: 4
old residual: 6.651e-11, old loocv: 8.321e-07
new residual: 7.158e-11, new loocv: 8.528e-07
new indices: 1, new samples: 4
old residual: 7.158e-11, old loocv: 8.528e-07
new residual: 4.889e-11, new loocv: 6.559e-07
new indices: 1, new samples: 4
old residual: 4.889e-11, old loocv: 6.559e-07
new residual: 4.642e-11, new loocv: 6.220e-07
new indices: 1, new samples: 4
old residual: 4.642e-11, old loocv: 6.220e-07
new residual: 4.520e-11, new loocv: 6.129e-07
new indices: 1, new samples: 4
old residual: 4.520e-11, old loocv: 6.129e-07
new residual: 4.639e-11, new loocv: 6.159e-07
new indices: 1, new samples: 4
old residual: 4.639e-11, old loocv: 6.159e-07
new residual: 3.642e-11, new loocv: 4.480e-07
new indices: 1, new samples: 4
old residual: 3.642e-11, old loocv: 4.480e-07
new residual: 3.216e-11, new loocv: 3.926e-07
new indices: 1, new samples: 4
old residual: 3.216e-11, old loocv: 3.926e-07
new residual: 3.096e-11, new loocv: 3.793e-07
new indices: 1, new samples: 4
old residual: 3.096e-11, old loocv: 3.793e-07
new residual: 2.029e-11, new loocv: 3.257e-07
new indices: 1, new samples: 4
old residual: 2.029e-11, old loocv: 3.257e-07
new residual: 7.890e-12, new loocv: 2.240e-07
new indices: 1, new samples: 4
old residual: 7.890e-12, old loocv: 2.240e-07
new residual: 2.909e-12, new loocv: 1.355e-07
new indices: 1, new samples: 4
old residual: 2.909e-12, old loocv: 1.355e-07
new residual: 1.907e-12, new loocv: 1.112e-07
new indices: 1, new samples: 4
old residual: 1.907e-12, old loocv: 1.112e-07
new residual: 1.733e-12, new loocv: 1.058e-07
new indices: 1, new samples: 4
old residual: 1.733e-12, old loocv: 1.058e-07
new residual: 1.723e-12, new loocv: 1.050e-07
new indices: 1, new samples: 4
old residual: 1.723e-12, old loocv: 1.050e-07
new residual: 1.540e-12, new loocv: 9.896e-08
new indices: 1, new samples: 4
old residual: 1.540e-12, old loocv: 9.896e-08
new residual: 1.594e-12, new loocv: 9.867e-08

Output Statistics

With the optimal polynomial order determined, computing the output statistics is as straightforward as other examples.

[40]:

Postprocess PCE: mean, stdev, sensitivities, quantiles
mean = pce.mean()
stdev = pce.stdev()

[41]:

Set of subsets of [0, 1, ..., dimension-1] with at most 3 components
variable_interactions = list(chain.from_iterable(combinations(range(dimension), r) for r in range(1, 3+1)))

[42]:

"Total sensitivity" is a non-partitive relative sensitivity measure per
parameter.
total_sensitivity = pce.total_sensitivity()

[43]:

"Global sensitivity" is a partitive relative sensitivity measure per set of
parameters.
global_sensitivity = pce.global_sensitivity(variable_interactions)

[44]:

Quantile bands, similar to a box plot
used for PCE and MC
Q = 3 # Number of quantile bands to plot
dq = 0.5/(Q+1)
q_lower = np.arange(dq, 0.5-1e-7, dq)[::-1]
q_upper = np.arange(0.5 + dq, 1.0-1e-7, dq)
quantile_levels = np.append(np.concatenate((q_lower, q_upper)), 0.5)

Monte Carlo Statistics

Here we compute the output statistics using Monte Carlo (MC) sampling to compare to the adaptive PCE method.

[45]:

For comparison: Monte Carlo statistics
M = 1000 # Generate MC samples
p_phys = dist.MC_samples(M)
output = np.zeros([M, N])

for j in range(M):
 output[j, :] = model(p_phys[j, :])

MC_mean = np.mean(output, axis=0)
MC_stdev = np.std(output, axis=0)
if version_lessthan(np,'1.15'):
 from scipy.stats.mstats import mquantiles
 MC_quantiles = mquantiles(output, quantile_levels, axis=0)
else:
 MC_quantiles = np.quantile(output, quantile_levels, axis=0)
MC_median = MC_quantiles[-1, :]

Visualize Statistics

Similar to other examples, we will plot the uncertainty over the domain of the domain of the model. This example shows how users might do so more manually instead of using the built in plotting functions

Plotting Setup

To plot our output statistics we are going to compute the quantile bands that we will visualize

[46]:

quantiles = pce.quantile(quantile_levels, M=int(2e3))
median = quantiles[-1, :]

Single Domain Plot Comparison

Plotting the mean and standard deviation for both PCE and MC. Each are plotted a different way to help differentiate them.

[49]:

Visualization
V = 50 # Number of MC samples to visualize

mean +/- stdev plot
plt.plot(x, output[:V, :].T, 'k', alpha=0.8, linewidth=0.2)
plt.plot(x, mean, 'b', label='PCE mean')
plt.fill_between(x, mean-stdev, mean+stdev, interpolate=True, facecolor='