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CHAPTER

ONE

ABOUT UNCERTAINSCI

UncertainSCI [1] is a Python-based toolkit that harnesses modern techniques to estimate model and parametric un-
certainty, with a particular emphasis on needs for biomedical simulations and applications. This toolkit enables non-
intrusive integration of these techniques with well-established biomedical simulation software.

Currently implemented in UncertainSCI is Polynomial Chaos Expansion (PCE) with a number of input distributions.
For more information about these techniques, see: [2, 3, 4, 5, 6]. For studies using UncertainSCI, see: [7, 8, 9, 10, 11,
12]

1.1 Getting Started with UncertainSCI

1.1.1 System Requirements

Requires Python 3 and modules listed in requirements.txt

1.1.2 Getting UncertainSCI

The easyiest way to get UncertainSCI is to use pip. Just run pip install UncertainSCI or python -m pip
install UncertainSCI and pip will download and install the latest version of UncertainSCI. This will also try
to download and install the relevent dependencies too.

To get pip, see its documentation.

The source code for UncertainSCI can be downloaded from the Github page.

Installing UncertainSCI From Source

UncertainSCI can be built from source code using the setup.py script. To call this script, navagate to the source root
directory in a terminal window and run the command pip install . or python -m pip install .

3
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1.1.3 UncertainSCI Overview

Users can evaluate the effect of input uncertainty on forward models with UncertainSCI’s implementation of polynomial
Chaos expansion (PCE). The pipeline for the process is shown in the following image:

Before Using UncertainSCI

In order to run UncertainSCI, it must be supplied with the input parameter distributions, a model that will run the
parameters in question, and a way to collect model solutions for use in PCE. The model itself can be implemented
in Python or in another software, as appropriate, as parameter sets and solutions can pass between UncertainSCI and
modeling software via hard disk. Models with high resolution solutions should could be cost prohibitive to run with
PCE, so users should consider derived metrics or solutions subsets (regions of interest) for UQ.

Users must chose the input distributions for their modeling pipeline, which may significantly impact the output distri-
butions. The indendent application will determine the best distributions to use, yet we suggest that the users use all
information available to inform their choices. Published literature and previously generated data are, of course, more
credible, but users may need to rely on their own intuition and observed trends with the targeted model.

PCE computation time

Since UncertainSCI uses PCE to compute UQ, it is worth noting the impact of some PCE parameters on computational
time. Mostly, the time needed to compute UQ via PCE is limited by the evalutated model, especially in bioelectric field
and other 3D simulation applications. PCE attempts to reduce computational cost by limiting the number of parameter
samples are needed to estimated the model output distributions, as the fewer parameter sets needed, the few times the
model needs to be run. Since PCE is estimating a polynomial to represent the output distribution, some user choices
will affect the sample size

Number of parameters modeled in the PCE will affect the number of samples needed to estimate the model uncertainty
by increasing the dimensionality of the estimated polynomial. Higher demensions require more sampling points to
accurately capture, so will lead to higher computation times. However, parameters must be evaluated in the PCE
together to determine the effect of their interaction in the targeted model.

polynomial (PCE) order affects the PCE samples needed for UQ by defining the complexity captured by PCE. As in
1D, polynomials with higher order are able to capture higher variability within the domain. Therefore, models with
high complexity, i.e., significant response to variation in the parameter space, should use higher polynomial orders.
However, more parameter samples are required to estimate higher polynomials, increasing the number of times the
model must be run.

4 Chapter 1. About UncertainSCI
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Distribution type of the parameters may effect the number of samples, but to a minor level when compared to number
of parameters and polynomial order.

Running UncertainSCI

Running UncertainSCI for Sample Generation

With the model setup, the user will need to setup the input parameter distribution using UncertainSCI’s distribution
datatype. While there are a few distribution types to choose from, the Beta distribution is a common choice. If we had
three input parameters, we can define a different beta distribution for each, thus:

from UncertainSCI.distributions import BetaDistribution

Nparams = 3
# Three independent parameters with different Beta distributions
p1 = BetaDistribution(alpha=0.5, beta=1.)
p2 = BetaDistribution(alpha=1., beta=0.5)
p3 = BetaDistribution(alpha=1., beta=1.)

For the default case used in here, the range of each parameter is [0 , 1].

After the input parameters are set, we can generate a parameter sampling that will most efficiently estimate the UQ.
In order to do this, the user must create a PCE object with the distributions. However, the user must also define a
polynomial order. This defined as an integer:

# # Polynomial order
order = 5

Now we can create the PCE object and generate parameter samples:

from UncertainSCI.pce import PolynomialChaosExpansion

# Generate samples first, then manually query model, then give model output to pce.
pce = PolynomialChaosExpansion(distribution=[p1, p2, p3], order=order, plabels=plabels)
pce.generate_samples()

To use the samples generated by this PCE instantiation, users can access it through the object:

import numpy as np # output is np array
pce.samples

Which returns a numpy array of size MxN where N is the number of parameters and M is the number of samples (deter-
mined by uncertainSCI).

1.1. Getting Started with UncertainSCI 5
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Running Parameter Samples for Model Outputs

While this is heavily dependent on the modeling pipeline, the generated samples can be save to disk to run in an external
pipeline:

np.savetxt(filename,pce.samples)

or called within python:

for ind in range(pce.samples.shape[0]):
model_output[ind, :] = model(pce.samples[ind, :])

If the samples are saved to disk to run asyncronously, they will need to be added to a PCE object if the original one is
destroyed. This happens when it is run as a script, then rerun with data and is acheived with:

pce.set_samples(np.loadtxt(filename))

instead of running pce.generate_samples(). Similarly, the output results from the simulation will need to be a
numpy array of MxP where M is the number of parameter sets, and P is the size of the solution array. 2D and 3D
solutions can be flattened into a 1D array and collated into this solution array, then reshaped for visualization.

PCE and the Output Statistics

With the appropriate distributions and samples added to the PCE object and model output collect, the estimator and
output statistics can be generated. First, the PCE must be built:

pce.build(model_output=model_output)

Then, output statistics can be return:

mean = pce.mean()
stdev = pce.stdev()
global_sensitivity, variable_interactions = pce.global_sensitivity()
quantiles = pce.quantile([0.25, 0.5, 0.75]) # 0.25, median, 0.75 quantile

There are also built in ploting functions (with matplotlib) for 1D data:

from matplotlib import pyplot as plt
mean_stdev_plot(pce, ensemble=50)
quantile_plot(pce, bands=3, xvals=x, xlabel='$x$')
piechart_sensitivity(pce)

plt.show()

The API documentation explains the implementation of UncertainSCI in more detail.

6 Chapter 1. About UncertainSCI
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1.1.4 Running UncertainSCI Demos

There are a number of demos included with UncertainSCI to test it’s installation and to demonstrate its use. The previous
description can be found as a notebook with some more details here and as a script in demos/build_pce.py.

The demo scripts can be a way to quickly test the installation. Make sure that UncertainSCI is installed, then simply
call the script with python using the command python demos/build_pce.py. Other demos can be run similarily.

We have included a number of demos and tutorials to teach users how to use UncertainSCI with various examples.

1.2 Support

1.2.1 Questions?

If you have questions, please ask them on our public discussion board: https://github.com/SCIInstitute/UncertainSCI/
discussions

Or, you can ask them on our mailing list uncertainsci@sci.utah.edu. To subscribe:

• send an email to sympa@sci.utah.edu with subscribe uncertainsci in the body of the email.

• You will receive an email requesting confirmation of the subscription.

• Reply (no text needed) to the email to confirm submission.

Now you’re on the list and will receive updates and questions. You can also submit questions to the list once subscribed

To unsubscribe from the mailing list:

• send an email to sympa@sci.utah.edu with unsubscribe uncertainsci in the body of the email.

• You will receive a confirmation email confirming the unsubcription.

You can also submit questions to our private support email at cibc-contact@sci.utah.edu

1.2.2 Bugs and Requests

If you find any bugs or have any feature requests, please create an issue on GitHub: https://github.com/SCIInstitute/
UncertainSCI/issues

1.3 Tutorials

1.3.1 Simple Example Showing UQ With PCE

This example shows some basic functionality of UncertainSCI using the polynomial Chaos emulators (PCE) to quantify
uncertainty in a 1D function. It is essentially identical to demos/build_pce.py and uses a 1D Laplacian ODE as a
model with three parameters

[1]: import numpy as np
from matplotlib import pyplot as plt

from UncertainSCI.distributions import BetaDistribution
from UncertainSCI.model_examples import laplace_ode_1d
from UncertainSCI.pce import PolynomialChaosExpansion

(continues on next page)
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(continued from previous page)

from UncertainSCI.vis import piechart_sensitivity, quantile_plot, mean_stdev_plot

Model Parameter setup

The first step in running UncertainSCI is to specify the parameter distributions and the capacity of the PCE model
(polynomial order).

Distributions

[2]: # Number of parameters
Nparams = 3

# Three independent parameters with different Beta distributions
p1 = BetaDistribution(alpha=0.5, beta=1.)
p2 = BetaDistribution(alpha=1., beta=0.5)
p3 = BetaDistribution(alpha=1., beta=1.)

plabels = ['a', 'b', 'z']

Polynomial Order

How complicated the model is

[3]: # # Polynomial order
order = 5

Forward Model

− 𝑑

𝑑𝑥
𝑎(𝑥, 𝑝) · 𝑑

𝑑𝑥
𝑢(𝑥, 𝑝) = 𝑓(𝑥)

with 𝑥 in [−1, 1] discretized with 𝑁 points, where 𝑎(𝑥, 𝑝) is a Fourier-Series-parameterized diffusion model with the
variables 𝑝𝑗 = [𝑎, 𝑏, 𝑧]. See the laplace_ode_1d method or UncertainSCI/model_examples.py for details.

[4]: N = 100
x, model = laplace_ode_1d(Nparams, N=N)

8 Chapter 1. About UncertainSCI
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Running PCE in UncertainSCI

The steps to running PCE in UncertainSCI are - create PCE object - generate parameter samples - run parameter sets
in the forward model - give model output to PCE - compute output statistics

Create PCE object and Build Sample Set

With the parameter distribution created and polynomial order set, we can create the PCE object and generate a parameter
set that will efficiently and accurately estimate the output distribution of the model. UncertainSCI adds an extra 10
parameter sets as a precaution.

[5]:
pce = PolynomialChaosExpansion(distribution=[p1, p2, p3], order=order, plabels=plabels)
pce.generate_samples()

print('This queries the model {0:d} times'.format(pce.samples.shape[0]))

Precomputing data for Jacobi parameters (alpha,beta) = (-0.500000, 0.000000)...Done
This queries the model 66 times

Run Parameter Sets in the Forward Model

We query each parameter set in sequence to run in our Laplacian ODE model and collect the results

[6]: model_output = np.zeros([pce.samples.shape[0], N])
for ind in range(pce.samples.shape[0]):

model_output[ind, :] = model(pce.samples[ind, :])

Build PCE from Model Outputs

With the collated model solutions, the output distributions can be estimated using PCE

[7]: pce.build(model_output=model_output)

[7]: array([1.75571628e-37, 5.64860235e-17, 2.10743598e-16, 4.30180091e-16,
6.73615485e-16, 8.98426649e-16, 1.06808811e-15, 1.15833221e-15,
1.16057868e-15, 1.08209494e-15, 9.43231789e-16, 7.72726181e-16,
6.02299430e-16, 4.61625174e-16, 3.74362183e-16, 3.55551159e-16,
4.10403164e-16, 5.34387196e-16, 7.14489737e-16, 9.31478341e-16,
1.16290358e-15, 1.38643597e-15, 1.58302359e-15, 1.73934375e-15,
1.84914225e-15, 1.91328322e-15, 1.93860602e-15, 1.93592175e-15,
1.91761943e-15, 1.89536658e-15, 1.87829599e-15, 1.87191182e-15,
1.87777401e-15, 1.89387162e-15, 1.91549769e-15, 1.93639635e-15,
1.94995954e-15, 1.95029022e-15, 1.93300605e-15, 1.89571844e-15,
1.83817752e-15, 1.76211869e-15, 1.67087823e-15, 1.56886365e-15,
1.46096875e-15, 1.35201633e-15, 1.24629417e-15, 1.14722754e-15,
1.05720583e-15, 9.77557484e-16, 9.08648189e-16, 8.50065649e-16,
8.00849025e-16, 7.59724059e-16, 7.25312441e-16, 6.96294722e-16,
6.71517851e-16, 6.50048858e-16, 6.31183955e-16, 6.14427000e-16,
5.99452329e-16, 5.86065283e-16, 5.74169862e-16, 5.63747820e-16,

(continues on next page)
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(continued from previous page)

5.54848130e-16, 5.47581156e-16, 5.42108762e-16, 5.38620514e-16,
5.37288102e-16, 5.38194279e-16, 5.41239598e-16, 5.46038218e-16,
5.51822165e-16, 5.57379403e-16, 5.61052914e-16, 5.60824129e-16,
5.54493189e-16, 5.39951481e-16, 5.15520386e-16, 4.80308188e-16,
4.34519740e-16, 3.79646212e-16, 3.18469931e-16, 2.54843985e-16,
1.93246402e-16, 1.38157999e-16, 9.33612879e-17, 6.12921066e-17,
4.25845893e-17, 3.59260824e-17, 3.82825975e-17, 4.54770963e-17,
5.30202417e-17, 5.70278062e-17, 5.50298773e-17, 4.64948566e-17,
3.29537537e-17, 1.77021507e-17, 5.15427668e-18, 0.00000000e+00])

Compute Output Statistics

With the PCE built, statistics can be calculated for each point in the solution space (x).

[8]: ## Postprocess PCE: statistics are computable:
mean = pce.mean()
stdev = pce.stdev()
global_sensitivity, variable_interactions = pce.global_sensitivity()
quantiles = pce.quantile([0.25, 0.5, 0.75]) # 0.25, median, 0.75 quantile

Output Visualizations

To help understand and interpret UQ statistics, we’ve included some plotting tools for 1D data.

[9]: mean_stdev_plot(pce, ensemble=50)

[9]: <AxesSubplot:title={'center':'Mean $\\pm$ standard deviation'}, xlabel='$x$'>
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[10]: quantile_plot(pce, bands=3, xvals=x, xlabel='$x$')

[10]: <AxesSubplot:title={'center':'Median + quantile bands'}, xlabel='$x$'>

1.3. Tutorials 11
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[11]: piechart_sensitivity(pce)

[11]: <AxesSubplot:title={'center':'Sensitivity due to variable interactions'}>
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1.3.2 Demos

Simple example with boxplots

This project was supported by grants from the National Institute of Biomedical Imaging and Bioengineering
(U24EB029012) from the National Institutes of Health.

Overview

This tutorial demonstrates basic construction of a PolynomialChaosExpansion (PCE) emulator, and generates box
plots using these emulators. The code used in this document is in the demos/simple_boxplots.py demo file.

Building the emulator

UncertainSCI requires the user to specify

• a pointer that evaluates a forward model

• distributions for each input parameter to the model

• the polynomial order, which is a PCE expressivity parameter (alternatively, adaptive procedures can automatically
select this)

1.3. Tutorials 13
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The forward model

We will use the Ishigami function, a model built into UncertainSCI, as our forward model. The following imports this
function

from UncertainSCI.model_examples import ishigami_function

# Parameters for function
a = 1
b = 0.05

f = ishigami_function(a,b)

This generates a function f of three parameters. See the [Ishigami Function] description for more information
about this model.

Parameter distributions

A more complete discussion of creating parameter distributions is given in the [Defining Random Parameters]
tutorial. Here we only present a simple setup. We will assume that our three parameters,

\begin{align} \mathbf{P} = (P_1, P_2, P_3) \in \mathbb{R}^3 \end{align}

are each independent and uniform on the interval \([-\pi, \pi]\). We set this up in UncertainSCI with the following:

from UncertainSCI.distributions import BetaDistribution, TensorialDistribution

## Set up parameter distributions
bounds = np.reshape(np.array([-np.pi, np.pi]), [2, 1])
p1 = BetaDistribution(alpha=1, beta=1, domain=bounds)
p2 = BetaDistribution(alpha=1, beta=1, domain=bounds)
p3 = BetaDistribution(alpha=1, beta=1, domain=bounds)

p = TensorialDistribution(distributions=[p1, p2, p3])

We have used the fact that a BetaDistribution with parameters alpha=beta=1 corresponds to the uniform dis-
tribution. See [Beta Distribution] for more information about the Beta distribution. Note also that we have
individually defined the parameters, and then combined them into a single three-dimensional random parameter using
the TensorialDistribution command.

Defining polynomial order

There are many ways to set polynomial order in UncertainSCI. Here we describe a simple, manual approach. Using
the command,

index_set = TotalDegreeSet(dim=3, order=4)

would create an order-4 polynomial space in 3 dimensions (the number of parameters). In this particular demo, we will
investigate the effect of increasing the polynomial order.

14 Chapter 1. About UncertainSCI
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PCE emulators

We will create several PCE emulators, each corresponding to a different PCE order. We accomplish this as follows:

orders = [3, 4, 5, 6]
pces = []

for order in orders:
index_set = TotalDegreeSet(dim=3, order=order)
pce = PolynomialChaosExpansion(distribution=p, index_set=index_set)
pce.build(model=f)
pces.append(pce)

Each PCE object is instantiated by specifying the distribution p and the polynomial order via the index_set variable.
The PCE is built from the model by calling pce.build(model=f). This last command samples the model f as many
times as needed for the chosen polynomial order. More advanced usage patterns allow finer control over how many
samples of f are collected.

Building the PCE, which requires several forward model evaluations, is typically the most computationally costly
portion of the pipeline. (In this particular demo it is not since the forward model is very cheap to evaluate.)

Querying the emulators

The PCE objects are computationally efficient emulators for evaluting f(p). In particular, the following generates a
random ensemble for the model output by querying an emulator pce at an input ensemble pvals for the parameter p:

ensembles = []
pvals = p.MC_samples(M=ensemble_size)

ensembles.append(pce.pce_eval(pvals))

The number of samples required to build the PCE is relatively small (see the next section). However, the ensemble
generated above does not require extra PCE samples from f to be generated. Thus, this ensemble sampling is very
efficient.

Boxplots

We generate boxplots using standard Monte Carlo sampling and also sampling from the emulators. For this demo, we
use an ensemble of size \(10^6\) to generate the boxplot visualizations. We compare the following two approaches.

• PCE emulators built using UncertainSCI with varying polynomial orders each collecting less than 100 forward
model samples.

• A Monte Carlo (MC) approach that collects \(10^6\) forward model samples.

Boxplots are generated using the matplotlib boxplot feature.

1.3. Tutorials 15
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PCE Statistics

Building PCE emulators

One of the main tools in UncertainSCI is the ability to build polynomial Chaos expansions. (See Polynomial Chaos
Expansions for an overview of methodology.) In this first demo, we will investigate the demos/build_pce.py file
and its output. The main goal of this demo is to build a PCE emulator for predicting variation in a model with respect
to parameters.

To construct a PCE emulator, one needs to specify both a probability distribution on the parameters, and the expressivity
of the PCE model.

In this example, we define a probability distribution over 3 parameters. We model these parmaeters as independent and
uniform, each over the interval [0, 1]:

Listing 1: demos/build_pce.py: Specifying a probability distribution

# Number of parameters
dimension = 3

# Specifies 1D distribution on [0,1] (alpha=beta=1 ---> uniform)
alpha = 1.
beta = 1.
dist = BetaDistribution(alpha=alpha, beta=alpha, dim=dimension)

Here the dimension indicates that we have 3 random parameters. We have used the BetaDistribution class to
define a Beta probability distribution (see Distributions) with dimension (3) independent variables. Since alpha and
beta are scalars, they are assumed to apply for each dimension. The values alpha=1 and beta=1 correspond to the
uniform density, and the default domain of the Beta distribution is [0, 1].

16 Chapter 1. About UncertainSCI
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Second, we need to specify the expressivity of the PCE model, which in turns will translate into how much data we’ll
need to gather from the model. Expressivity is defined by the type of polynomial space; for now, we’ll impose a
degree-5 total degree space:

Listing 2: demos/build_pce.py: Specifying expressivity of the PCE

order = 5
indices = TotalDegreeSet(dim=dimension, order=order)

See Polynomial Chaos Expansions for more about expressivity and polynomial spaces. With the distribution and the
expressivity defined, we can instantiate the PCE object:

pce = PolynomialChaosExpansion(indices, dist)

We must now train the PCE on the model. For this simple, example, we take the model defined as

𝑚𝑜𝑑𝑒𝑙(𝑥, 𝑝) = sin
[︀
𝜋(𝑝1 + 𝑝22 + 𝑝33)𝑥

]︀
,

where 𝑥 is one-dimensional physical space, and (𝑝1, 𝑝2, 𝑝3) are our three parameters. We create this modeling by
specifying the discrete spatial grid over which 𝑥 is defined. Our model is created via

Listing 3: demos/build_pce.py: Creating a parameterized model

N = int(1e2) # Number of degrees of freedom of model
model = sine_modulation(N=N)

This syntax implicity assumes N spatial grid points equispaced on the interval [−1, 1]. The function model takes as
input a length-3 vector representing a parameter value for (𝑝1, 𝑝2, 𝑝3), and outputs a length-100 vector representing the
value of the model output on the N spatial points at that parameter.

The simplest way to build the PCE emulator is to input the model to the build method of the pce object:

lsq_residuals = pce.build(model)

This call queries the model several times at different parameter locations, and uses this data to build a PCE emulator.
The parameter locations along with the associated model data are accessible via

Listing 4: demos/build_pce.py: Accessing parameter locations and data
from a built PCE emulator

parameter_samples = pce.samples
model_evaluations = pce.model_output

However, the main utility of having a now-built PCE emulator is that statistics (with respect to the parameters
(𝑝1, 𝑝2, 𝑝3)) are easily computable. For example, the mean and standard deviation (which are functions of the spa-
tial variable 𝑥) can be computed as

Listing 5: demos/build_pce.py: Computing the mean and standard devi-
ation of a PCE emulator

mean = pce.mean()
stdev = pce.stdev()

More advanced operations are available. Variance-based sensitivity analysis can provide a means for ranking parameter
importance. We can compute the so-called total sensitivity index, which measures the importance of each variable on
a scale of 0 to 1, and also the global sensitivity index, which measures the relative importance that each subset of
variables has to the overall variance:

1.3. Tutorials 17
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Listing 6: demos/build_pce.py: Computing sensitivity indices

# Power set of [0, 1, 2]
variable_interactions = list(chain.from_iterable(combinations(range(dimension), r) for r␣
→˓in range(1, dimension+1)))

total_sensitivity = pce.total_sensitivity()
global_sensitivity = pce.global_sensitivity(variable_interactions)

Finally, we can also compute quantiles (level sets of the cumulative distribution function) of the model output.

Listing 7: demos/build_pce.py: Computing quantiles and the median

Q = 4 # Number of quantile bands to plot
dq = 0.5/(Q+1)
q_lower = np.arange(dq, 0.5-1e-7, dq)[::-1]
q_upper = np.arange(0.5 + dq, 1.0-1e-7, dq)
quantile_levels = np.append(np.concatenate((q_lower, q_upper)), 0.5)

quantiles = pce.quantile(quantile_levels, M=int(2e3))
median = quantiles[-1,:]

The remainder of build_pce.py contains (a) simulations that compare PCE against methods using (much more ex-
pensive) Monte Carlo sampling, and (b) for visualizing the output. In particular, the following images are shown by
running build_pce.py. Note: The procedures are randomized so that the output figures shown here may slightly vary
with respect to results generated on a local machine.

Fig. 1: Graphical output from demos/build_pce.py showing the predicted mean and standard deviation as a function
of the spatial variable 𝑥, along with a comparison against Monte Carlo methods.
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Fig. 2: Graphical output from demos/build_pce.py compared PCE output with medians and quantile bands against
results from a more expensive Monte Carlo simulation.

Fig. 3: Graphical output from demos/build_pce.py showing variance-based global sensitvity indices, measuring the
relative importance of subsets of parameters.
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1.3.3 Adaptive PCE

This notebook is an example of UncertainSCI’s functionality to adaptively determine the needed polynomial order of
a given model and parameter set. This example is equivalent to demos/adapt_pce.py

[1]: from itertools import chain, combinations

import numpy as np
from matplotlib import pyplot as plt
import matplotlib.animation as animation

from UncertainSCI.distributions import BetaDistribution
from UncertainSCI.model_examples import KLE_exponential_covariance_1d, \

laplace_ode, laplace_grid_x
from UncertainSCI.indexing import TotalDegreeSet
from UncertainSCI.pce import PolynomialChaosExpansion
from UncertainSCI.utils.version import version_lessthan

# some features work better with this option
%matplotlib notebook

Adaptive PCE Setup

Three things must be specified: - The physical model - A parameter distribution - The initial expressivity of the PCE
(polynomial space)

Define Forward model

The model in this example is a 1D laplacian ODE. See the laplace_ode_1d method or UncertainSCI/
model_examples.py for details.

− 𝑑

𝑑𝑥
𝑎(𝑥, 𝑝) · 𝑑

𝑑𝑥
𝑢(𝑥, 𝑝) = 𝑓(𝑥)

over 𝑥 in [−1, 1], where 𝑎(𝑥, 𝑝) is a parameterized diffusion model:

𝑎(𝑥, 𝑝) = �̄�+

𝑑∑︁
𝑗=1

𝜆𝑗𝑝𝑗𝜑𝑗(𝑥)

where 𝑑 is the dimension, (𝜆𝑗 , 𝜑𝑗) are eigenpairs of the exponential covariance kernel,

𝐾(𝑠, 𝑡) = 𝑒−|𝑠−𝑡|/𝑎.

The 𝑝𝑗 are modeled as random variables.

[2]: # Number of parameters
dimension = 2

# Define diffusion coefficient
a = 1.
b = 1. # Interval is [-b,b]
abar = lambda x: 1*np.ones(np.shape(x))

(continues on next page)
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KLE = KLE_exponential_covariance_1d(dimension, a, b, abar)

diffusion = lambda x, p: KLE(x, p)

N = int(1e2) # Number of spatial degrees of freedom of model
left = -1.
right = 1.
x = laplace_grid_x(left, right, N)

model = laplace_ode(left=left, right=right, N=N, diffusion=diffusion)

Parameter Distributions

We are using two model parameters with the same beta distribution for this example.

[3]:

# Specifies 1D distribution on [0,1] (alpha=beta=1 ---> uniform)
alpha = 1.
beta = 1.
dist = BetaDistribution(alpha=alpha, beta=beta, dim=dimension)

Initial Expressivity of the PCE

This example uses a different setup than you might see in other examples. Other setups will be equivalent for many
non-adaptive cases, but it is useful to operate with the index set in this example. Another important distinction that is
necessary for the adaptive case is supplying the model as a lambda function to the PCE object.

[4]: # Expressivity setup
order = 0
index_set = TotalDegreeSet(dim=dimension, order=order)
starting_indices = index_set.get_indices()

[5]: # Building the PCE
pce = PolynomialChaosExpansion(index_set, dist)
pce.build(model=model)
Nstarting_samples = pce.samples.shape[0]
initial_accuracy = pce.accuracy_metrics.copy()
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Running Adaptive PCE

With the initial PCE setup, we can run adaptive method. This will attempt to find the best order to represent the
uncertainty for the given model and parameter distributions. The method will add new samples as needed to minimize
the residual error between iterations. This may take a few minutes to run from scratch.

[39]: # pce.adapt_robustness(max_new_samples=50)
residuals, loocvs, added_indices, added_samples = pce.adapt_expressivity(max_new_
→˓samples=100, add_rule=3)

new indices: 1, new samples: 4
old residual: 1.418e-09, old loocv: 4.334e-06
new residual: 1.424e-09, new loocv: 4.259e-06
new indices: 1, new samples: 4
old residual: 1.424e-09, old loocv: 4.259e-06
new residual: 1.446e-09, new loocv: 4.243e-06
new indices: 1, new samples: 4
old residual: 1.446e-09, old loocv: 4.243e-06
new residual: 9.789e-10, new loocv: 2.748e-06
new indices: 1, new samples: 4
old residual: 9.789e-10, old loocv: 2.748e-06
new residual: 9.637e-10, new loocv: 2.499e-06
new indices: 1, new samples: 4
old residual: 9.637e-10, old loocv: 2.499e-06
new residual: 6.000e-10, new loocv: 2.085e-06
new indices: 1, new samples: 4
old residual: 6.000e-10, old loocv: 2.085e-06
new residual: 2.177e-10, new loocv: 1.412e-06
new indices: 1, new samples: 4
old residual: 2.177e-10, old loocv: 1.412e-06
new residual: 9.205e-11, new loocv: 9.741e-07
new indices: 1, new samples: 4
old residual: 9.205e-11, old loocv: 9.741e-07
new residual: 6.980e-11, new loocv: 8.633e-07
new indices: 1, new samples: 4
old residual: 6.980e-11, old loocv: 8.633e-07
new residual: 6.651e-11, new loocv: 8.321e-07
new indices: 1, new samples: 4
old residual: 6.651e-11, old loocv: 8.321e-07
new residual: 7.158e-11, new loocv: 8.528e-07
new indices: 1, new samples: 4
old residual: 7.158e-11, old loocv: 8.528e-07
new residual: 4.889e-11, new loocv: 6.559e-07
new indices: 1, new samples: 4
old residual: 4.889e-11, old loocv: 6.559e-07
new residual: 4.642e-11, new loocv: 6.220e-07
new indices: 1, new samples: 4
old residual: 4.642e-11, old loocv: 6.220e-07
new residual: 4.520e-11, new loocv: 6.129e-07
new indices: 1, new samples: 4
old residual: 4.520e-11, old loocv: 6.129e-07
new residual: 4.639e-11, new loocv: 6.159e-07
new indices: 1, new samples: 4

(continues on next page)
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old residual: 4.639e-11, old loocv: 6.159e-07
new residual: 3.642e-11, new loocv: 4.480e-07
new indices: 1, new samples: 4
old residual: 3.642e-11, old loocv: 4.480e-07
new residual: 3.216e-11, new loocv: 3.926e-07
new indices: 1, new samples: 4
old residual: 3.216e-11, old loocv: 3.926e-07
new residual: 3.096e-11, new loocv: 3.793e-07
new indices: 1, new samples: 4
old residual: 3.096e-11, old loocv: 3.793e-07
new residual: 2.029e-11, new loocv: 3.257e-07
new indices: 1, new samples: 4
old residual: 2.029e-11, old loocv: 3.257e-07
new residual: 7.890e-12, new loocv: 2.240e-07
new indices: 1, new samples: 4
old residual: 7.890e-12, old loocv: 2.240e-07
new residual: 2.909e-12, new loocv: 1.355e-07
new indices: 1, new samples: 4
old residual: 2.909e-12, old loocv: 1.355e-07
new residual: 1.907e-12, new loocv: 1.112e-07
new indices: 1, new samples: 4
old residual: 1.907e-12, old loocv: 1.112e-07
new residual: 1.733e-12, new loocv: 1.058e-07
new indices: 1, new samples: 4
old residual: 1.733e-12, old loocv: 1.058e-07
new residual: 1.723e-12, new loocv: 1.050e-07
new indices: 1, new samples: 4
old residual: 1.723e-12, old loocv: 1.050e-07
new residual: 1.540e-12, new loocv: 9.896e-08
new indices: 1, new samples: 4
old residual: 1.540e-12, old loocv: 9.896e-08
new residual: 1.594e-12, new loocv: 9.867e-08

Output Statistics

With the optimal polynomial order determined, computing the output statistics is as straightforward as other examples.

[40]: # # Postprocess PCE: mean, stdev, sensitivities, quantiles
mean = pce.mean()
stdev = pce.stdev()

[41]: # Set of subsets of [0, 1, ..., dimension-1] with at most 3 components
variable_interactions = list(chain.from_iterable(combinations(range(dimension), r) for r␣
→˓in range(1, 3+1)))

[42]: # "Total sensitivity" is a non-partitive relative sensitivity measure per
# parameter.
total_sensitivity = pce.total_sensitivity()

1.3. Tutorials 23



UncertainSCI, Release 1.0.1

[43]: # "Global sensitivity" is a partitive relative sensitivity measure per set of
# parameters.
global_sensitivity = pce.global_sensitivity(variable_interactions)

[44]: # Quantile bands, similar to a box plot
# used for PCE and MC
Q = 3 # Number of quantile bands to plot
dq = 0.5/(Q+1)
q_lower = np.arange(dq, 0.5-1e-7, dq)[::-1]
q_upper = np.arange(0.5 + dq, 1.0-1e-7, dq)
quantile_levels = np.append(np.concatenate((q_lower, q_upper)), 0.5)

Monte Carlo Statistics

Here we compute the output statistics using Monte Carlo (MC) sampling to compare to the adaptive PCE method.

[45]: # # For comparison: Monte Carlo statistics
M = 1000 # Generate MC samples
p_phys = dist.MC_samples(M)
output = np.zeros([M, N])

for j in range(M):
output[j, :] = model(p_phys[j, :])

MC_mean = np.mean(output, axis=0)
MC_stdev = np.std(output, axis=0)
if version_lessthan(np,'1.15'):

from scipy.stats.mstats import mquantiles
MC_quantiles = mquantiles(output, quantile_levels, axis=0)

else:
MC_quantiles = np.quantile(output, quantile_levels, axis=0)

MC_median = MC_quantiles[-1, :]

Visualize Statistics

Similar to other examples, we will plot the uncertainty over the domain of the domain of the model. This example
shows how users might do so more manually instead of using the built in plotting functions

Plotting Setup

To plot our output statistics we are going to compute the quantile bands that we will visualize

[46]:
quantiles = pce.quantile(quantile_levels, M=int(2e3))
median = quantiles[-1, :]
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Single Domain Plot Comparison

Plotting the mean and standard deviation for both PCE and MC. Each are plotted a different way to help differentiate
them.

[49]: # # Visualization
V = 50 # Number of MC samples to visualize

# mean +/- stdev plot
plt.plot(x, output[:V, :].T, 'k', alpha=0.8, linewidth=0.2)
plt.plot(x, mean, 'b', label='PCE mean')
plt.fill_between(x, mean-stdev, mean+stdev, interpolate=True, facecolor='red',

alpha=0.5, label='PCE 1 stdev range')

plt.plot(x, MC_mean, 'b:', label='MC mean')
plt.plot(x, MC_mean+MC_stdev, 'r:', label='MC mean $\\pm$ stdev')
plt.plot(x, MC_mean-MC_stdev, 'r:')

plt.xlabel('x')
plt.title('Mean $\\pm$ standard deviation')

plt.legend(loc='lower right')

[49]: <matplotlib.legend.Legend at 0x7ff890449b50>

Side-by-Side Domain Plot Comparison

Here we plot similar data to the previous figure, but with two plots to allow the quantile bands to be shown for each
method.

[50]: # quantile plot
plt.figure()

plt.subplot(121)
plt.plot(x, pce.model_output[:V, :].T, 'k', alpha=0.8, linewidth=0.2)
plt.plot(x, median, 'b', label='PCE median')

band_mass = 1/(2*(Q+1))

for ind in range(Q):
alpha = (Q-ind) * 1/Q - (1/(2*Q))
if ind == 0:

plt.fill_between(x, quantiles[ind, :], quantiles[Q+ind, :],
interpolate=True, facecolor='red', alpha=alpha,
label='{0:1.2f} probability mass (each band)'.format(band_mass))

else:
plt.fill_between(x, quantiles[ind, :], quantiles[Q+ind, :],

interpolate=True, facecolor='red', alpha=alpha)

plt.title('PCE Median + quantile bands')
(continues on next page)
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plt.xlabel('x')
plt.legend(loc='lower right')

plt.subplot(122)
plt.plot(x, output[:V, :].T, 'k', alpha=0.8, linewidth=0.2)
plt.plot(x, MC_median, 'b', label='MC median')

for ind in range(Q):
alpha = (Q-ind) * 1/Q - (1/(2*Q))
if ind == 0:

plt.fill_between(x, MC_quantiles[ind, :], MC_quantiles[Q+ind, :],
interpolate=True, facecolor='red',
alpha=alpha,
label='{0:1.2f} probability mass (each band)'
.format(band_mass))

else:
plt.fill_between(x, MC_quantiles[ind, :], MC_quantiles[Q+ind, :],

interpolate=True, facecolor='red', alpha=alpha)

plt.title('MC Median + quantile bands')
plt.xlabel('x')
plt.legend(loc='lower right')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[50]: <matplotlib.legend.Legend at 0x7ff8b83d0e80>

Parameter Sensitivity Estimated with PCE

The pie chart shows the global sensitivity of the model to each parameter averaged over the domain. Global sensitivities
can help differentiate model sensitivity from a single parameter and parameter interactions.

[51]: # Sensitivity pie chart, averaged over all model degrees of freedom
average_global_SI = np.sum(global_sensitivity, axis=1)/N

labels = ['[' + ' '.join(str(elem) for elem in [i+1 for i in item]) +
']' for item in variable_interactions]

_, ax = plt.subplots()
ax.pie(average_global_SI*100, labels=labels, autopct='%1.1f%%',

startangle=90)
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.title('Sensitivity due to variable interactions')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[51]: Text(0.5, 1.0, 'Sensitivity due to variable interactions')
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Regression Plots

The regression plots in this section help illustrate the choices of the adaptive PCE method.

[56]: # Index set plot
fig = plt.figure()

plt.subplot(121)

current_inds = plt.plot(starting_indices[:, 0], starting_indices[:, 1],
'k.', markersize=20, label='Current indices')[0]

rmargin = plt.plot([], [], 'bo', markersize=10, fillstyle='none',
label='Candidates')[0]

future_inds = plt.plot([], [], 'rx', markersize=15,
label='Chosen indices')[0]

plt.legend(frameon=False)

indices = pce.index_set.get_indices()
maxx, maxy = indices[:, 0].max(), indices[:, 1].max()
plt.axis([-0.5, maxx+1.5, -0.5, maxy+1.5])
plt.gca().set_yticks(range(maxy+2), minor=False)
plt.gca().set_xticks(range(maxx+2), minor=False)
plt.grid()
plt.xlabel('Degree in $p_1$')
plt.ylabel('Degree in $p_2$')

plt.subplot(122)
added_samples_plt = added_samples[:] # shallow copy
added_samples_plt.insert(0, Nstarting_samples)
Nsamples = np.cumsum(added_samples_plt)

plt.semilogy(Nsamples, residuals, 'k-', label='Residual')
plt.semilogy(Nsamples, loocvs, 'k--', label='LOOCV')
current_accuracy = plt.plot([], [], 'rx', markersize=15)[0]
plt.xlabel('Total model queries')
plt.legend(frameon=False)

def animation_init():
return current_inds, future_inds, rmargin, current_accuracy

def animation_update(i):
index_set = TotalDegreeSet(dim=dimension, order=order)
for q in range(i):

index_set.augment(added_indices[q])

current_set = index_set.get_indices()
reduced_margin = index_set.get_reduced_margin()

current_inds.set_data(current_set[:, 0], current_set[:, 1])
rmargin.set_data(reduced_margin[:, 0], reduced_margin[:, 1])
future_inds.set_data(added_indices[i][:, 0], added_indices[i][:, 1])
current_accuracy.set_data([Nsamples[i+1], Nsamples[i+1]],

(continues on next page)
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[residuals[i+1], loocvs[i+1]])

return current_inds, future_inds, rmargin, current_accuracy

ani = animation.FuncAnimation(fig, animation_update,
np.arange(0, len(added_indices)),
interval=500, blit=True,
init_func=animation_init, repeat=False)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

[ ]:

1.3.4 Built-in forward models

This project was supported by grants from the National Institute of Biomedical Imaging and Bioengineering
(U24EB029012) from the National Institutes of Health.

Overview

UncertainSCI is distributed with simple forward models included. These forward models stem from a variety of appli-
cations in uncertainty quantification (UQ), and many are typical test problems that are used to validate UQ algorithms.
These models are included with UncertainSCI so that users can test UQ procedures in a standalone way.

Algebraic models

Several simple algebraic models are described below. These are functions of explicit form that allow validation and
debugging of UQ algorithms. In particular, statistics of many of these examples are explicitly computable.

Ishigami function

Given real parameters \((a,b) \in \mathbb{R}^2\), the Ishigami function is given by

\begin{align} f(\mathbf{p}) &= \left( 1 + b p_3^4 \right) \sin p_1 + a \sin^2 p_2, & \mathbf{p} &= (p_1, p_2, p_3)
\end{align}

Because this function has an explicit ANOVA decomposition, its partial variances are explicitly computable. If each
parameters \(p_i\) is modeled as uniform random variable over \([-\pi, \pi]\), i.e., \(p_i \sim \mathcal{U}\left([-\pi,
\pi]\right)\), then the variances are given by,

\begin{align} \mathrm{Mean}[f(\mathbf{p})] &= \frac{a}{2}, \\ \mathrm{Var}[f(\mathbf{p})] &= \frac{1}{2}
+ \frac{a^2}{8} + \pi^4 b \left( \frac{1}{5} + \frac{\pi^4 b}{18} \right), \\ \mathrm{Var}_1 [f(\mathbf{p})]
&= \frac{1}{2} \left( 1 + b \frac{\pi^4}{5}\right)^2, \\ \mathrm{Var}_2 [f(\mathbf{p})] &= \frac{a^2}{8}, \\
\mathrm{Var}_{13} [f(\mathbf{p})] &= \pi^8 b^4 \left( \frac{1}{18} - \frac{1}{50}\right) \end{align}
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Borehole function

The Borehole function is given by

\begin{align} f(\mathbf{p}) = \frac{g_1(\mathbf{p})}{g_2(\mathbf{p}) g_3(\mathbf{p})}, \end{align} where \be-
gin{align} g_1(\mathbf{p}) &= 2\pi p_3 (p_4 - p_6), & g_2(\mathbf{p}) &= \log(p_2/p_1), & g_3(\mathbf{p}) &=
1 + \frac{2 p_7 p_3}{g_2(\mathbf{p}) p_1^2 p_8} + \frac{p_3}{p_5} \end{align} where the 8 parameters collected
in \(\mathbf{p}\) are \begin{align} \mathbf{p} = (p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8) = (r_w, r, T_u, H_u, T_l,
H_l, L, K_w), \end{align} with physical interpretation and typical distributions as given below,

• \(r_w \sim \mathcal{U}([0.05, 0.15])\): Borehole radius [m]

• \(r \sim \mathcal{U}([100, 50,000])\): Borehole radius of influence [m]

• \(T_u \sim \mathcal{U}([63,070, 115,600])\): Upper acquifer transmissivity [m^2/year]

• \(H_u \sim \mathcal{U}([990, 1,100])\): Upper acquifer pentiometric head [m]

• \(T_l \sim \mathcal{U}([63.1, 116])\): Lower acquifer transmissivity [m^2/year]

• \(H_l \sim \mathcal{U}([700, 820])\): Lower acquifer pentiometric head [m]

• \(L \sim \mathcal{U}([1,120, 1,680])\): Borehole length [m]

• \(K_w \sim \mathcal{U}([9,885, 12,045])\): Borehole hydraulic conductivity [m/year]

The output function \(f\) models the water flow rate. [@citation-gupta1983]

Differential equation models

More complicated forward models are included in this section, which are solutions to parametric differential equations.

ODE boundary value problem

This model in this example is the solution to an ordinary differential equation (ODE) with random parameters
$\mathbf{p}$. The solution \(u = u(x,\mathbf{p})\) depends on the spatial variable \(x\) lying on the compact do-
main \([x_-, x_+]\), and is governed by the ODE and boundary conditions,

\begin{align} -\frac{d}{dx} \left( a(x,\mathbf{p}) \frac{d}{dx} u(x,\mathbf{p}) \right) &= f(x), & x &\in (x_-, x_+)
\\ u(x_-, \mathbf{p}) &= 0, & u(x_+, \mathbf{p}) &= 0. \end{align} Above, the forcing function \(f\) and the dif-
fusion coefficient \(a(x, \mathbf{p})\) are specified functions. The diffusion coefficient must be strictly positive for
every parameter value $\mathbf{p}$ to ensure the above ODE is well posed. One particular specification of the dif-
fusion coefficient is as a (truncated) Karhunen-Loeve expansion (KLE), \begin{align} a(x,\mathbf{p}) &= a_0(x) +
\sum_{j=1}^d p_j a_j(x), & \mathbf{p} &= (p_1, \ldots, p_d), \end{align} where the mean diffusion behavior \(a_0\)
is given, and the functions \(a_j\) for \(j = 1, \ldots, d\) are (scaled) eigenfunctions of the integral operator associated
to an assumed covariance kernel of a random field \(a(x)\). In UncertainSCI, one example of such a truncated KLE
associated to an exponential covariance kernel can be created using the following:

imoprt numpy as np
from UncertainSCI.model_examples import KLE_exponential_covariance_1d

xminus = -1.
xplus = 1.
abar = lambda x: 3*np.ones(np.shape(x)) # Constant a_0 equal to 3
d = 4

a = KLE_exponential_covariance_1d(d, xminus, xplus, abar)
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The output a is a function with two inputs \(x\) and \(\mathbf{p}\). We discretize the \(x\) variable with \(N\) equispaced
points on \([x_-, x_+]\) and use a finite-difference method to solve the ODE. The following code then creates the ODE
model with this parametric diffusion coefficient:

from UncertainSCI.model_examples import laplace_grid_x, laplace_ode

N = 100
x = laplace_grid_x(xminus, xplus, N)

f = lambda x: np.pi**2 * np.cos(np.pi*x)

u = laplace_ode(left=xminus, right=xplus, N=N, diffusion=a, f=f)

This model can be queried using the syntax u(p), where p is a d-dimensional parameter vector.

1.3.5 Using UncertainSCI with External Simulation Software

UncertainSCI’s non-invasive methods and architecture allow it to be used with simulations run with a variety of soft-
ware. The only requirements is to take parameter sets from UncertainSCI and to generate a set of solutions for Un-
certainSCI to use. This can be acheived with software that is implemented in Python or contains a Python API, or by
creating a hard disk data passing system. We will include some examples on how to use these systems to integrate
simulations with UncertainSCI.

We most often interface UncertainSCI with SCIRun, a simulation software we also produce, to UQ predictions on
Bioelectric field simulations.

SCIRun/UncertainSCI ECG uncertainty due to cardiac postion

An uncertainty quantification (UQ) example computing the effect of heart position on boundary element method (BEM)
ECG forward computations. This example is similar to the work of Swenson, etal. but is implemented in UncertainSCI
and SCIRun.

Code and example data are found on GitHub: https://github.com/SCIInstitute/UQExampleBEMHeartPosition

1.3.6 Defining random parameters

This project was supported by grants from the National Institute of Biomedical Imaging and Bioengineering
(U24EB029012) from the National Institutes of Health.

Overview

UncertainSCI propagates randomness in input parameters to the distribution of the model output. In order to accomplish
this, a probability distribution on the input random parameters must be specified. This tutorial describes how to create
random parameters for use in UncertainSCI.

Let \(\mathbf{p}\) be a \(d\)-dimensional random parameter, \begin{align} \mathbf{P} = (P_1, \ldots, P_d),
\end{align} and assume that all parameters are independent. UncertainSCI specifies the joint distribution of
\(\mathbf{P}\) by defining univariate distributions for each parameter \(P_i\) for \(i = 1, \ldots, d\). There are two
main ways to specify these distributions:

• A univariate distribution for each \(P_i\) can be individually specified, and the joint distribution can be built from
these univariate ones using the TensorialDistribution class.
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• If \(P_i\) for every \(i = 1, \ldots, d\) each have distributions from the same parametric family (for example, if
each \(P_i\) has an exponential distribution), then the joint distribution for \(P\) can be built from one call to the
parametric family class.

We describe below first how to create univariate distributions of various types, and this is followed by examples of how
to build joint (multivariate) distributions.

Types of distributions

If \(P\) is a scalar continuous random variable, we let \(f_P\) denote its probability density function (pdf). When \(P\)
is discrete, we will still write a density \(f_P\) using Dirac (delta) masses located on the discrete support points of \(P\).
In particular, \(\delta_y(p)\) denotes the Dirac delta, a function of \(p\), centered at \(p = y\).

Beta Distribution

Let \(P\) be a random variable with Beta distribution, having shape parameters \(\alpha\in (0,\infty)\) and
\(\beta\in(0,\infty)\). The pdf for \(P\) is

\begin{align} f_P(p) &= \frac{ p^\alpha (1-p)^\beta}{B(\alpha,\beta)}, & p &\in (0, 1), \end{align} where
\(B(\cdot,\cdot)\) is the Beta function, which is a normalization constant ensuring that \(f_P\) is a pdf.

The shape parameters \(\alpha\) and \(\beta\) dictate how the mass of \(P\) concentrates toward/away from the endpoints
\(0\) and \(1\). Specializations of the Beta distribution include:

• Uniform distribution on \([0, 1]\): \(\alpha = \beta = 1\)

• Arcsine distribution on \([0, 1]\): \(\alpha = \beta = \frac{1}{2}\)

• Wigner semicircle distribution on \([0, 1]\): \(\alpha = \beta = \frac{3}{2}\)

Beta distributions are instantiated in UncertainSCI using the distributions.BetaDistribution class, which takes
as inputs the shape parameters alpha and beta, corresponding to \(\alpha\) and \(\beta\), respectively. For example,
the following creates a parameter P having Beta distribution with \((\alpha,\beta) = (1,1)\):

from UncertainSCI.distributions import BetaDistribution

P = BetaDistribution(alpha=1, beta=1)

Normal distribution

Let \(P\) be a random variable with a normal distribution, having mean \(\mu\in \mathbb{R}\) and variance
\(\sigma^2\in(0,\infty)\). The pdf for \(P\) is

\begin{align} f_P(p) &= \frac{ 1}{\sigma \sqrt{2 \pi} } \exp \left( -\frac{(p-\mu)^2}{2 \sigma^2} \right), & p &\in
\mathbb{R}. \end{align}

Normal distributions are instantiated in UncertainSCI using the distributions.NormalDistribution class, which
takes as inputs the distribution statistics mean and cov, corresponding to \(\mu\) and \(\sigma^2\), respectively. For
example, the following creates a parameter P having normal distribution with \((\mu,\sigma^2) = (1,3)\):

from UncertainSCI.distributions import NormalDistribution

P = NormalDistribution(mean=1, cov=3)
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Exponential distribution

Let \(P\) be a random variable with an exponential distribution, having minimum \(p_0 \in \mathbb{R}\) and shape
parameter \(\lambda \in (0, \infty)\). The pdf for \(P\) is

\begin{align} f_P(p) &= \lambda e^{-\lambda (p - p_0)}, & p &\in [p_0, \infty). \end{align}

Exponential distributions are instantiated in UncertainSCI using the distributions.ExponentialDistribution
class, which takes as inputs the parameters loc and lbd, corresponding to \(p_0\) and \(\lambda\), respectively. For
example, the following creates a parameter P having exponential distribution with \((p_0,\lambda) = (-1,2)\):

from UncertainSCI.distributions import ExponentialDistribution

P = ExponentialDistribution(loc=-1, lbd=2)

Discrete uniform distribution

Let \(P\) be a random variable with a discrete uniform distribution, having \(n \in \mathbb{N}\) equally-spaced support
points on \([0, 1]\). The pdf for \(P\) is

\begin{align} f_P(p) &= \sum_{j=1}^n \frac{1}{n} \delta_{\frac{j-1}{n-1}}(p) \end{align}

Discrete uniform distributions are instantiated in UncertainSCI using the distributions.
DiscreteUniformDistribution class, which takes as inputs the parameter n, corresponding to the number
of support points \(n\). For example, the following creates a parameter P having discrete uniform distribution with \(n
= 17\):

from UncertainSCI.distributions import DiscreteUniformDistribution

P = DiscreteUniformDistribution(n=17)

Non-parametric distributions

Coming soon. . . .

1.3.7 Template for Tutorial

This project was supported by grants from the National Institute of Biomedical Imaging and Bioengineering
(U24EB029012) from the National Institutes of Health.

Authors:Smart people here

Overview

** Overview of the document **
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Software Requirements

Overview Subsection

Chapter Name

** Overview text for the Chapter. In this case there will be examples of several types of content**

Section

Example section with subsection.

Use as many paragraphs as needed.

There are many markdown guides. Here are some examples: https://www.markdownguide.org/basic-syntax/ https:
//guides.github.com/features/mastering-markdown/

Subsection

Example Subsection. These can go to 6 #’s. Subsections are optional for table of contents and chapter scope.

Figures

Math

Math equations use MathJax. This requires the inclusion of this near the beginning of the document:

<script type="text/javascript" async
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML">

</script>

Example equation: \[ x = {-b \pm \sqrt{b^2-4ac} \over 2a} \] $$ \frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j}
= 0 ,. \label{eq:continuity} $$

1.3. Tutorials 33

https://www.markdownguide.org/basic-syntax/
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
http://docs.mathjax.org/en/latest/basic/mathematics.html


UncertainSCI, Release 1.0.1

inline equations use the \\(\mathbf{p}\\) sytanx: \(\mathbf{p}\)

Citations

Sphinx has a built in citation manager for bibtex: sphinxcontrib-bibtex. Works well for RST, but we are still working
on it for markdown. The sphinxcontrib-bibtex is built to run with rst in Sphinx. However, it can be used in markdown
using the AutoStructify package.

The whole paragraph will need to be in the eval_rst block [2]. For multiple references: [2, 6]

add a bibliography section

```eval_rst
.. bibliography::
```

Snippets

Inline snippets like this. Muliple lines:

# # Define model
N = int(1e2) # Number of degrees of freedom of model
left = -1.
right = 1.
x = np.linspace(left, right, N)
model = sine_modulation(N=N)

Links

Internal link: Overview

External link: https://www.markdownguide.org, or Markdown

Tables

Tables can be used with normal markdown syntax with the sphinx-markdown-tables package

| Syntax | Description |
| ----------- | ----------- |
| Header | Title |
| Paragraph | Text |
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Referencing Sphynx

To link the UncertainSCI API generated using Sphynx, Use this syntax: [text](../api_docs/pce.
html#polynomial-chaos-expansions)

1.4 Developer Documentation

1.4.1 Contribution Guide

Thank you for you contributions to UncertainSCI! We welcome and appreciate and contributions, from reporting a
bugs to code contributions. If you wish to contribute, please do so in the following ways.

Community Support

A great way to start contributing to UncertainSCI is to submit and answer questions on our [discussion board]https:
//github.com/SCIInstitute/UncertainSCI/discussions.

Other ways of contacting the communtity are located on our support page

Bugs and Features

We encourage users to report any bugs they find and request any features they’d like as a [GitHub issue]https:
//github.com/SCIInstitute/UncertainSCI/issues. If you would like to tackle any issues, please volunteer by
commenting in the issue or [assigning yourself]https://docs.github.com/en/issues/tracking-your-work-with-issues/
assigning-issues-and-pull-requests-to-other-github-users.

Make a Tutorial

If you have a tutorial you’d like to share, we’d love to have it. We have a Tutorial Tutorial to explain how to make and
contribute tutorials.

Contribute Code

We appreciate to code maintenance and development that our community can provide. If you’d like to submit a bug fix,
dependency update, or an added feature, please keep in mind the style guide, create a fork of the UncertainSCI repo,
and use a Pull Request to add it to UncertainSCI.

It is best practice to make sure that there is [GitHub issue]https://github.com/SCIInstitute/UncertainSCI/issues to de-
scribe the required changes to the code, and having these issues documented become more important with the scope
of the additions and changes. Possible additions can also be discussed on our [discussion board]https://github.com/
SCIInstitute/UncertainSCI/discussions.
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Fork Repo

With your own github account, go to the UncertainSCI Github page. Click the fork button on the upper right side of
the page. It will ask you where to move the fork to, chose your own account. Once the repository is forked, clone it to
your local machine with the following command.

$git clone https://github.com/[yourgithubaccount]/UncertainSCI.git

After the the code is cloned, navigate to the repository directory and add the upstream path to the original UncertainSCI
repository.

$git remote add upstream https://github.com/SCIInstitute/UncertainSCI.git

You should be able to see both your and the original repository when you use the command:

$git remote -v

The fork is good to go, but you will need to sync the fork occasionally to keep up with the changes in the main repository.
To sync your fork, use the following commands:

$git fetch upstream

$git checkout master

$git merge upstream/master

You should sync and merge your fork before you start a new module and before you create a pull request.It is a good
practice to create a new branch in your fork for every module you will be adding. The command to create a new branch
is:

$git checkout -b [branch_name]

Please see the Github help page for more information.

Pull Requests

With the contributions added to a branch on a fork of UncertainSCI, it is ready to create a [pull request]https://docs.
github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/
about-pull-requests. While this can be done in many ways, the easiest is probably through the web page of the forked
repo. When navigating to the main page, it will usually display the a contribute button near the top of the page for
recently updated branches. This is a shortcut to creating a pull request to the main repo and branch. Alternatively, a
pull request can be created from the pull request tab of either the main repo or the fork. Before making a pull request,
please make sure that you’ve tried your best to follow the style guide, and that the branch is up-to-date with the lastest
master branch. Also, please update or add testing as appropriate.

Once the pull request is created, the maintainers of UncertainSCI will assign reviewers who will test and review the code
to ensure that it meets the requirements of the style guide and is stable. It is best to limit the size of each pull request
to facilitate review, so if there are major new additions, please add a [GitHub issue]https://github.com/SCIInstitute/
UncertainSCI/issues to track the progress.
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Syle Guide

If you are editing code, take a few minutes to look at the code around you and determine its style. Please try to keep
the style of new code as similar as possible to unchanged code to avoid jarring inconsistencies in the style.

Python

• Indentation is 4 spaces per level for consistency with the rest of the code base. This may be revisited in the future.
Do not use tabs.

• Text encoding: UTF-8 is preferred, Latin-1 is acceptable

• Comparisons:

– To singletons (e.g. None): use ‘is’ or ‘is not’, never equality operations.

– To Booleans (True, False): don’t ever compare with True or False (for further explanation, see PEP 8).

• Prefix class definitions with two blank lines

• Imports

– Grouped in order of scope/commonallity

∗ Standard library imports

∗ Related third party imports

∗ Local apps/library specific imports

· UncertainSCI application imports and local/module imports may be grouped independently.

– One package per line (with or without multiple function/module/class imports from the package)

• Avoid extraneous whitespaces

Demos and Usecases

New demos and usecases are always welcome. Please add self-contained scripts demonstrating core functionality to
the [demos folder]https://github.com/SCIInstitute/UncertainSCI/tree/master/demos. Demos that require external pack-
ages can be located in seperate repos, such as this [UQ BEM heart position usecase]https://github.com/SCIInstitute/
UQExampleBEMHeartPosition

Testing

In addition to demos, please add unit testing to new function contributed to UncertainSCI using pytest. Unit test
should be placed in the [test folder]https://github.com/SCIInstitute/UncertainSCI/tree/master/tests, which contains sev-
eral tests to use as examples. To run the test, use the command:

pytest tests
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1.4.2 Making Tutorials

This project was supported by grants from the National Institute of Biomedical Imaging and Bioengineering
(U24EB029012) from the National Institutes of Health.

Authors:Jess Tate

Overview

This tutorial demonstrates how to use markdown to create new tutorials for UncertainSCI. It will walk through
all the files needed and the basic structure needed expected for tutorials. Knowledge of Markdown, Github,
Python, Sphinx, and Read the Docs will be useful. If you have questions, please ask.

Software requirements

UncertainSCI

To make a Tutorial for UncertainSCI, start with an up-to-date version of the code and documentation. Download the
source code or clone the repository from github. We suggest creating a fork of the repository so that you can track your
changes and create pull requests to the UncertainSCI repository. UncertainSCI requirements are found here

Dependencies and Development Tools

UncertainSCI uses Read the Docs and Sphinx to build and host tutorial documentation. This platform converts mark-
down files to html for web viewing using Sphinx, a Python Library. Testing the new documentation may require
building the web pages locally for viewing. This will require installing Python, pip, Sphinx, Recommonmark, and
other packages in the docs/requirements.txt file. More information can be found in the walkthorugh and on the
Sphinx documentation.

Creating Your UncertainSCI Fork

With your own github account, go to the UncertainSCI Github page. Click the fork button on the upper right side of
the page. It will ask you where to move the fork to, chose your own account. Once the repository is forked, clone it to
your local machine with the following command.

$git clone https://github.com/[yourgithubaccount]/UncertainSCI.git

After the the code is cloned, navigate to the repository directory and add the upstream path to the original UncertainSCI
repository.

$git remote add upstream https://github.com/SCIInstitute/UncertainSCI.git

You should be able to see both your and the original repositories when you use the command:

$git remote -v

The fork is good to go, but you will need to sync the fork occasionally to keep up with the changes in the main repository.
To sync your fork, use the following commands:
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$git fetch upstream

$git checkout master

$git merge upstream/master

You should sync and merge your fork before you start a new module and before you create a pull request.It is a good
practice to create a new branch in your fork for every module you will be adding. The command to create a new branch
is:

$git checkout -b [branch_name]

Please see the Github help page for more information.

Files Needed for a New Tutorial

This chapter will describe the files need to create a Tutorial for UncertainSCI.

Overview of Files Needed for a Tutorial

To make a new tutorial, a markdown file is required for the content of the tutorial. Other files, such as images, may
also be included. In addition to the new files for the tutorial, a link to the new tutorial should be added to the User
Documents file.

Markdown File

The main file needed for a new tutorial is a markdown file. The file should have an file ending of .md and should be
located in the UncertainSCI/docs/tutorials/ directory. There is a template file that can be used, or an existing
tutorial like this one can be used.

If using math equations in a latex, a call to the mathjax server is required at the begining of the document:

<script type="text/javascript" async
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML">

</script>

Sphinx will build the menu and table of contents from the header names, and the document will be formated correctly
if the proper markdown headings levels are used. For instance, the Document title should be the first content:

# Title

Then the chaper headings:

## Overview
## Chapter The First
## ETC.

An important part of the document is to acknowledge the authors and funding sources. Include text similar to this after
the document title:
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This project was supported by grants from the National Institute of Biomedical Imaging␣
→˓and Bioengineering (U24EB029012) from the National Institutes of Health.

Authors:
Smart people here

Chapters and sections will appear in the table of contents with the page titles. Once the file is added to the
docs/tutorial/index.rst file

Added Figures

Most tutorials require a number of screenshots and other images. Figures and images should be added in a folder for
each tutorial in the UncertainSCI/docs/user_docs/ folder. The figure folder should be named after the tutorial,
for example, the images in this tutorial are in a folder called HowToTutorial_figures. Instructions on how to use
the images and figures are found here

Additional Files

Additional files added to the tutorials folder should be minimized as much as possible. Example scripts should
be located in the UncertainSCI/examples directory and example data will, generally, need separate hosting. How-
ever, if one or two files are needed, they may be added to the UncertainSCI/docs/tutorials/ with a consistent
naming scheme. Bibtex file with a matching name should be added in UncertainSCI/docs/tutorials/, yet if
multiple additional files are needed, they should placed in a new folder indicating the tutorial: UncertainSCI/docs/
tutorials/[tutorial name]_files.

Linking to New Tutorial

For the new tutorial to be visible on the tutorials page, add the filename to the list in the UncertainSCI/docs/
tutorials/index.rst file.

Testing Documentation

This chapter describes how to test the look and content of the new tutorial. Test the generated github-pages with
either a local Sphinx build or using the online build on Read the Docs.

Testing Locally

Testing the documentation locally involves building documentation website on your local machine using Sphinx and
Recommonmark. These instructions are adapted from Read the Docs’ help page.
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Installing Shpinx

To install the Sphinx, make sure that a relatively recent version of Python 3. Installing sphinx and other dependencies
is easiest with pip, just run

pip install -r requirements.txt

in the UncertainSCI/docs folder and the relavent python dependencies, including Sphinx, will be installed.

Alternatively, the dependencies listed in UncertainSCI/docs/requirements.txt file could be installed seperately.

Please ask if you have any questions.

Building Documentation

Once the relavent python packages are installed properly, such as with pip, building the documentation pages is as
simple as running

make html

in the UncertainSCI/docs folder. A script will run and, assuming no errors, the html pages will be generated within
the UncertainSCI/docs/_build/ folder. Any of the html files can be tested by opening it in a browser.

Testing Online

In addition to building and testing the documentation pages locally, they can also be tested online with
Read the Docs. Any branch of a github repo can be built one the Read the Docs page. Online
builds can only be triggered deirectly on the readthe docs by those who have access. However, ev-
ery pull request to the UncertainSCI repo will trigger an online build that can be viewed by anyone.
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The documentation page can be viewd by clicking on the details link, shown in the image. Pull requests are required
when submitting contributions to UncertainSCI.

Please ask if you have any questions.

Adding Content

This chapter provides some examples of how to add some types of content that may be needed for a tutorial. For
general Markdown info, see here and here.

Figures

Figures can be added fairly easily in Markdown, with a simple call to the location:
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![Alt text](../_static/UncertainSCI.png "Title")

However, using a bit of html allows us to reference the figure easier:

<figure id="example">
<img src="../_static/UncertainSCI.png" alt="UncertainSCI example image">
<figcaption>Example for including an image in tutorial.</figcaption>
</figure>

And to reference (not working with Sphinx):

<a href="#example">reference the figure</a>

Math

Math equations can be used in Markdown using MathJax. Mathjax will convert LaTex format:

$$ \frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0 \,. \label{eq:continuity}
→˓$$

$$ \frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0 ,. \label{eq:continuity} $$ It can also use MathJax specific
tags:

\\[ x = {-b \pm \sqrt{b^2-4ac} \over 2a} \\]

\[ x = {-b \pm \sqrt{b^2-4ac} \over 2a} \]

inline equations use the \\(\mathbf{p}\\) sytanx: \(\mathbf{p}\)
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Citations

Since we are using Sphinx to build the documentation, we can use its citation manager, sphinxcontrib-bibtex. We will
provide some exmples here, but for more information, refer to the sphinxcontrib-bibtex documentation.

Citations to include in the UncertainSCI docs can be included in the UncertainSCI/docs/references.bib file. For
the keys, please use the convention: Initials of the contributor, colon, first three letters of the author (with apropriate
capitalization), and the year. For example JDT:Bur2020. For multiple citations from the same author in the same year,
lowercase letters can be appended to the key: JDT:Bur2020a.

After the reference has been added to UncertainSCI/docs/references.bib, the final step is to include the com-
mand in the appropriate place.

The sphinxcontrib-bibtex is built to run with rst in Sphinx. However, it can be used in markdown using the AutoStructify
package. This will require using using an eval_rst block as follows:

```eval_rst
The whole paragraph will need to be in the eval_rst block :cite:p:`JDT:Bur2020`. For␣
→˓multiple references: :cite:p:`JDT:Bur2020,gupta1983`
```

The whole paragraph will need to be in the eval_rst block [2]. For multiple references: [2, 6]

add a bibliography section

```eval_rst
.. bibliography:: ../references.bib
```

Snippets

Basic markdown some snippet

def function():
return True

def function():
return True

Links

Including links in Markdown is simple, just use <> or [](). For example, an internal link for section Adding Content
is :

[Adding Content](#adding-content)

When using internal links to sections, include the name of the section, all lower case and with - replacing spaces, and
all special characters ommited. Linking to other pages in within the UncertainSCI documentation requires a relative
path. Demos is:

[Demos](../tutorials/demos.html#demos)

Links to other websites can include the full URL. Using <> will show the URL, []() will hide it with other text.
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<https://www.markdownguide.org>
[Markdown](https://www.markdownguide.org)

https://www.markdownguide.org Markdown

Tables

Tables can be used with normal markdown syntax with the sphinx-markdown-tables package

| Syntax | Description |
| ----------- | ----------- |
| Header | Title |
| Paragraph | Text |

Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.

Referencing Sphinx

To link the UncertainSCI API generated using Sphinx, Use this syntax: [text](../api_docs/pce.
html#polynomial-chaos-expansions).

Content Guide

Try to be comprehensive, yet consise, and keep in mind the target audience for the tutorial. It is ok to write an advanced
tutorial that builds on more basic knowledge, but please make this expectation clear and link to tutorials and materials
that will help the reader develop the required understanding. Include code snippets, example scripts, screenshots, and
videos as appropriate. Please use existing tutorials as try to match the style, flow, and level of detail they provide.

Supplemental Materials

Some things to consider including with the tutorial.

Example Scripts

Example scripts should be located in the UncertainSCI/demos/ directory. Consider using one of the existing demos
as a template and try to follow the coding standards outlined in the contribution guide.

1.4. Developer Documentation 45

https://www.markdownguide.org
https://www.markdownguide.org
https://github.com/ryanfox/sphinx-markdown-tables
../api_docs/pce.html#polynomial-chaos-expansions
../api_docs/pce.html#polynomial-chaos-expansions
../tutorials/index.html#Contents
contribute.html


UncertainSCI, Release 1.0.1

Movies

Movies should be stored in a serperate place. We host most of ours on youtube or vimeo.

Youtube

Get the imbed link from the youtube video. This can be found by pressing the share button.

Vimeo

Get the imbed link from the vimeo video. This can be found by pressing the share button. There are more options if
for some users who own the video. More info here.

With the embed link, just include the html into the markdown file.

<iframe title="vimeo-player" src="https://player.vimeo.com/video/279319572" width="640"␣
→˓height="360" frameborder="0" allowfullscreen></iframe>

Datasets

Datasets should be located serperately, unless the size is small. Please ask if you have any questions.

Bibliography

1.5 API Documentation

1.5.1 Polynomial Spaces

The expressivity of a polynomial Chaos expansion (PCE, see Polynomial Chaos Expansions) can be set by specifying
a particular polynomial space.

class UncertainSCI.indexing.TotalDegreeSet(dim=1, order=0)

get_indices()

class UncertainSCI.indexing.HyperbolicCrossSet(dim=1, order=0)

get_indices()

class UncertainSCI.indexing.LpSet(dim=1, order=0, p=1)

get_indices()
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1.5.2 Distributions

Introduction

This module is used to define probability distributions. For computing polynomial Chaos expansions (see Polynomial
Chaos Expansions), these will be input distributions into a forward model defining the stochastic variation of model
parameters.

UncertainSCI currently supports the following types of random variables:

• Beta distributions (See BetaDistribution)

• Exponential distributions (See ExponentialDistribution)

• Normal distributions (See NormalDistribution)

• Discrete uniform distributions (See DiscreteUniformDistribution)

Tensorizations within a distribution are possible across these families by instantiating the distribution appropriately.
Tensorizations across distributions is also possible, but requires individual instantiation of each distribution, followed
by a constructor call to the TensorialDistribution class. (See TensorialDistribution)

E.g., a three-dimensional random variable 𝑌 = (𝑌1, 𝑌2, 𝑌3) can have independent components, with the distribution
of 𝑌1 normal, that of 𝑌2 beta, and that of 𝑌3 exponential.

The distributions are located in the distributions.py file.

class UncertainSCI.distributions.BetaDistribution(alpha=None, beta=None, mean=None,
stdev=None, dim=None, domain=None,
bounds=None)

Constructs a Beta distribution object; supports multivariate distributions through tensorization. In one dimen-
sion, beta distributions have support on the real interval [0,1], with probability density function,

𝑤(𝑦;𝛼, 𝛽) :=
𝑦𝛼−1(1− 𝑦)𝛽−1

𝐵(𝛼, 𝛽)
, 𝑦 ∈ (0, 1),

where 𝛼 and 𝛽 are positive real parameters that define the distribution, and 𝐵 is the Beta function. Some special
cases of note:

• 𝛼 = 𝛽 = 1: the uniform distribution

• 𝛼 = 𝛽 = 1
2 : the arcsine distribution

To generate this distribution on a general compact interval [𝑎, 𝑏], set the domain parameter below.

Instead of (𝛼, 𝛽), a mean 𝜇 and standard deviation :math:\sigmamay be set. In this case, (𝜇, 𝜎)must correspond
to valid (i.e., positive) values of (𝛼, 𝛽) on the interval [0,1], or else an error is raised.

Finally, this class supports tensorization: multidimensional distributions corresopnding to independent one-
dimensional marginal distributions are supported. In the case of identically distributed marginals, the dim pa-
rameter can be set to the appropriate dimension. In case of non-identical marginals, an array or iterable can be
input for 𝛼, 𝛽, 𝜇, 𝜎.

Parameters

• alpha (float or iterable of floats, optional) – Shape parameter

• 1. (associated to left-hand boundary. Defaults to) –

• beta (float or iterable of floats, optional) – Shape parameter

• 1. –

• mean (float or iterable of floats, optional) – Mean of the distribution.
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• None. (the distribution. Defaults to) –

• stdev (float or iterable of floats, optional) – Standard deviation of

• None. –

• dim (int, optional) – Dimension of the distribution. Defaults to None.

• domain (numpy.ndarray or similar, of size 2 x dim, optional) – Compact

• None (hypercube that is the support of the distribution. Defaults to) –

dim

Dimension of the distribution.

Type
int

alpha

Shape parameter(s) alpha.

Type
float or np.ndarray

beta

Shape parameter(s) beta.

Type
float or np.ndarray

polys

Type
JacobiPolynomials or list thereof

MC_samples(M=100)
Returns M Monte Carlo samples from the distribution.

cov()

Returns the (auto-)covariance matrix of the distribution.

mean()

Returns the mean of the distribution.

meanstdev_to_alphabeta(mu, stdev)
Returns alpha, beta given an input mean (mu) and standard deviation (stdev) for a Beta distribution on the
interval [0, 1].

pdf(x)
Evaluates the probability density function (pdf) of the distribution at the input locations x.

stdev()

Returns the standard deviation of the distribution, if the distribution is one-dimensional. Raises an error if
called for a multivariate distribution.

class UncertainSCI.distributions.ExponentialDistribution(flag=True, lbd=None, loc=None,
mean=None, stdev=None, dim=None)

MC_samples(M=100)
Returns M Monte Carlo samples from the distribution.
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cov()

mean()

meanloc_to_lbd(mu, loc)
Returns lbd given an input mean (mu) and location (loc) for a Exponential distribution

pdf(x)

stdev()

Returns the standard deviation of the distribution, if the distribution is one-dimensional. Raises an error if
called for a multivariate distribution.

class UncertainSCI.distributions.NormalDistribution(mean=None, cov=None, dim=None)

MC_samples(M=100)
Returns M Monte Carlo samples from the distribution.

cov()

mean()

pdf(x)
Evaluates the probability density function (pdf) of the distribution at the input locations x.

stdev()

Returns the standard deviation of the distribution, if the distribution is one-dimensional. Raises an error if
called for a multivariate distribution.

class UncertainSCI.distributions.DiscreteUniformDistribution(n=None, domain=None, dim=None)

MC_samples(M=100)
Returns M Monte Carlo samples from the distribution.

cov()

mean()

pmf(x)
Evaluates the probability mass function (pmf) of the distribution

stdev()

Returns the standard deviation of the distribution, if the distribution is one-dimensional. Raises an error if
called for a multivariate distribution.

class UncertainSCI.distributions.TensorialDistribution(distributions=None, dim=None)

MC_samples(M=100)
Returns M Monte Carlo samples from the distribution
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1.5.3 Polynomial Families

The computational building blocks of polynomial Chaos expansions (PCE, see Polynomial Chaos Expansions) are
methods for univariate orthogonal polynomial families. Contains classes/methods for general univariate orthogonal
polynomial families. - evaluation - gauss quadrature - ratio evaluations - linear/quadratic measure modifications

class UncertainSCI.opoly1d.OrthogonalPolynomialBasis1D(recurrence=[], probability_measure=True)

apply_jacobi_matrix(v)
Premultiplies the input array by the Jacobi matrix of the appropriate size for the polynomial family. Applies
the Jacobi matrix across the first dimension of v.

Parameters
v (ndarray) – Input vector or array

Returns
Jv – J*v, where J is the Jacobi matrix of size v.shape[0].

Return type
ndarray

canonical_connection(N)

Returns the N x N matrix C, where row n of C contains expansion coefficients for p_n in the monomial
basis. I.e.,

p_n(x) = sum_{j=0}^{n} C[n,j] x**j,

for n = 0, . . . , N-1.

canonical_connection_inverse(N)

Returns the N x N matrix C, where row n of C contains expansion coefficients for x^n in the orthonormal
basis . I.e.,

x^n = sum_{j=0}^{n} C[n,j] p_j(x)

for n = 0, . . . , N-1.

christoffel_function(x, k)
Computes the normalized (inverse) Christoffel function lambda, defined as

lambda**2 = k / sum(p**2, axi=1),

where p is a matrix containing evaluations of an orthonormal polynomial family up to degree k-1, defined
by the recurrence coefficients ab.

derivative_expansion(s, N , K=None)
Computes the coefficients

𝜎
(𝑠)
𝑛,𝑘 =

⟨
𝑝(𝑠)𝑛 , 𝑝𝑘

⟩
,

where 𝑝
(𝑠)
𝑛 is the 𝑠‘𝑡ℎ𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑜𝑓𝑡ℎ𝑒𝑑𝑒𝑔𝑟𝑒𝑒− : 𝑚𝑎𝑡ℎ : ‘𝑘 orthonormal polynomial 𝑝𝑘. These are,

equivalently, expansion coefficients of 𝑝(𝑠)𝑛 in the basis {𝑝𝑘}𝑘.

Parameters

• s – The integer order of the derivative. Must be non-negative.

• N – Computes coefficients for 𝑛 ≤ 𝑁

• K – Computes coefficients for 𝑘 ≤ 𝐾 (optional). If not given, is set to N.
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Returns
(N+1) x (K+1) numpy array containing coefficients.

Return type
C

eval(x, n, d=0)

gauss_quadrature(N)

Computes the N-point Gauss quadrature rule associated to the recurrence coefficients ab.

gauss_radau_quadrature(N , anchor=0.0)
Computes the N-point Gauss quadrature rule associated to the polynomial family, with a node at the spec-
ified anchor.

jacobi_matrix(N)

Returns the N x N jacobi matrix associated to the polynomial family.

jacobi_matrix_driver(N)

Returns the N x N jacobi matrix associated to the input recurrence coefficients ab. (Requires ab.shape[0]
>= N+1.)

leading_coefficient(N)

Returns the leading coefficients for the first N polynomial basis elements.

qpoly1d_eval(x, n, d=0)
Evalutes Christoffel-function normalized polynomials. These are given by

q_k(x) = p_k(x) / sqrt( sum_{j=0}^{n-1} p_j^2 ), k = 0, . . . , n-1

The output is a x.size x n array

r_eval(x, n, d=0)
Evalutes ratios of orthonormal polynomials. These are given by

r_n(x) = p_n(x) / p_{n-1}(x), n >= 1

The output is a x.size x n.size array.

recurrence(N)

Returns the first N+1 orthogonal polynomial recurrence pairs. The orthonormal polynomial family satisfies
the recurrence

p_{-1}(x) = 0 p_0(x) = 1/ab[0,1]

x p_n(x) = ab[n+1,1] p_{n+1}(x) + ab[n+1,0] p_n(x) + ab[n,1] p_{n-1}(x)
(n >= 0)

The value ab[0,0] is ignored and never used.

Recurrence coefficients ab, once computed, are stored as an instance variable. On subsequent calls to this
function, the stored values are returned if the instance variable already contains the desired coefficients. If
the instance variable does not contain enough coefficients, then a call to recurrence_driver is performed to
compute the desired coefficients, and the output is stored in the instance variable.

Parameters
N (positive integer) – Maximum polynomial degree for desired recurrence coefficients

Returns
ab – (N+1) x 2 array of recurrence coefficients.

Return type
ndarray
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recurrence_driver(N)

s_eval(x, n)
The output is a x.size x (n+1) array.

s_n(x) = p_n(x) / sqrt(sum_{j=0}^{n-1} p_j^2(x)), n >= 0

s_0(x) = p_0(x)

s_1(x) = 1 / b_1 * (x - a_1)

s_2(x) = 1 / (b_2 * sqrt(1+s_1^2)) * ((x - a_2)*s_1 - b_1)

Need {a_k, b_k} k up to n

tuple_product(N , alpha)
Computes integrals of polynomial products. Returns an N x N matrix C with entries

C[n,m] = < p_n p_m, p_alpha >,

where alpha is a vector of integers and p_alpha is defined

p_alpha = prod_{j=1}^{alpha.size} p_[alpha[j]](x),

The notation <., .> denotes the inner product under which the polynomial family is orthogonal.

Parameters

• N (integer) – Size of matrix to return

• alpha (ndarray (1d)) – Multi-index defining a polynomial product

Returns
C – Output N x N matrix containing integral values

Return type
ndarray

tuple_product_generator(IC, ab=None)
Helper function that increments indices for a polynomial product expansion.

IC is a vector with entries

IC[j] = < p_j, p_alpha >, j in range(N),

where N = IC.size. The notation < ., .> is the inner product under which the polynomial family is orthonor-
mal. alpha is a multi-index of arbitrary shape with a polynomial defined by

p_alpha = prod_{j in range(alpha.size)} p_{alpha[j]}(x).

The value of alpha is not needed by this function.

This function returns an N x N matrix C with entries

C[n,j] = < p_n p_j, p_alpha >, j, n in range(N)

Parameters

• IC (vector (1d array)) – Values of input inner products

• ab (ndarray, optional) – Recurrence coefficients

Returns
C – Output coefficient expansion vector for beta

Return type
ndarray
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Contains routines that specialize opoly1d things for classical orthogonal polynomial families - jacobi polys - hermite
poly - laguerre polys

class UncertainSCI.families.JacobiPolynomials(alpha=0.0, beta=0.0, domain=[-1.0, 1.0], **options)
Jacobi Polynomial family.

eval_1d(x, n)
Evaluates univariate orthonormal polynomials given their three-term recurrence coefficients ab

eval_nd(x, lambdas)
Evaluates tensorial orthonormal polynomials associated with the univariate recurrence coefficients ab

fidistinv(u, n)

fidistinv_jacobi_setup(n, data)

idist(x, n, M=50)
Computes the order-n induced distribution at the locations x using M=10 quadrature nodes.

idist_medapprox(n)
Computes an approximation to the median of the degree-n induced distribution.

idistinv(u, n)

recurrence_driver(N)

class UncertainSCI.families.HermitePolynomials(alpha=2, rho=0.0, **options)

idist(x, n)

idistinv(u, n)

recurrence_driver(N)

class UncertainSCI.families.LaguerrePolynomials(alpha=1.0, rho=0.0, **options)

idist(x, n)

idist_medapprox(n)

idistinv(u, n)

recurrence_driver(N)

class UncertainSCI.families.DiscreteChebyshevPolynomials(M=2, domain=[0.0, 1.0])
Class for polynomials orthonormal on [0,1] with respect to an M-point discrete uniform measure with support
equidistributed on the interval.

eval(x, n, **options)

fidistinv(u, n)
Fast routine for idistinv. (In this case, the “slow” routine is already very fast, so this is just an alias for
idistinv.)

idist(x, n, nugget=False)
Evalutes the order-n induced distribution at the locations x.

Optionally, add a nugget to ensure correct computation on the support points.
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idistinv(u, n)
Computes the inverse order-n induced distribution at the locations u.

recurrence_driver(N)

1.5.4 Polynomial Chaos Expansions

Introduction

In their most basic use, polynomial chaos expansions (PCE) create an emulator for a quantity that depends on a random
variable. For simplicity, we will assume that this random variable is finite-dimensional. Let 𝜉 denote a 𝑑-dimensional
random variable. For some function 𝑓 : R𝑑 → R, the PCE approach performs the approximation,

𝑓(𝜉) ≈ 𝑓𝑁 (𝜉) :=

𝑁∑︁
𝑛=1

𝑓𝑛𝜑𝑛(𝜉), (1.1)

where {𝜑𝑛}∞𝑛=1 are polynomial functions of the random variable 𝜉, and {ℎ𝑎𝑡𝑓𝑛}∞𝑛=1 are coefficients. If such an
emulator can be constructed, then statistics are evaluated as statistics of the emulator.

For example, the (approximation to the) mean is

E𝑓(𝜉) ≈
𝑁∑︁

𝑛=1

𝑓𝑛E[𝜑𝑛(𝜉)], (1.2)

which can be efficiently evaluated by manipulation of the coefficients 𝑓𝑛. The terms E[𝜑𝑛(𝜉)] can be evaluated exactly
using properties of the 𝜑𝑛 polynomials.

All of the above extends to the case when the function 𝑓 depends on other variables, such as space 𝑥 or time 𝑡. For
example, if 𝑓 = 𝑓(𝑥, 𝑡, 𝜉), then the PCE approach becomes

𝑓(𝑥, 𝑡, 𝜉) ≈ 𝑓𝑁 (𝑥, 𝑡, 𝜉) :=

𝑁∑︁
𝑛=1

𝑓𝑛(𝑥, 𝑡)𝜑𝑛(𝜉),

so that the coefficients depend on (𝑥, 𝑡). Then the space- and time-varying expectation can be evaluated in a manner
similar to (1.2).

For PCE approaches, most of the computation involves computing the coefficients {𝑓𝑛}∞𝑛=1. Non-intrusive PCE strate-
gies accomplish this by computing values of 𝑓 on a specific sampling grid or experimental design in stochastic space:
{𝜉𝑚}𝑀𝑚=1. The procedures used in UncertainSCI typically require the number of samples 𝑀 to scale with the degrees
of freedom in the emulator 𝑁 .

In order to utilize the PCE approaches in UncertainSCI, two items must be provided:

1. The distribution of the random variable 𝜉. See Distributions for how to generate this distribution.

2. The type of polynomial functions in (1.1). This amounts to defining a particular polynomial subspace. See
Polynomial Spaces for how to generate this subspace.
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PolynomialChaosExpansion

class UncertainSCI.pce.PolynomialChaosExpansion(index_set=None, distribution=None, order=None,
plabels=None, sampling='greedy-induced',
training='wlsq', **kwargs)

Base polynomial chaos expansion class.

Provides interface to construct and manipulate polynomial chaos expansions.

Attributes:

coefficients: A numpy array of polynomial chaos expansion coefficients. indices: A MultiIndexSet
instance specifying the polynomial

approximation space.

distribution: A ProbabilityDistribution instance indicating the
distribution of the random variable.

samples: The experimental or sample design in stochastic space.

adapt_expressivity(max_new_samples=10, **chase_bulk_options)
Adapts the PCE approximation by increasing expressivity. (Intended to combat residual error.)

adapt_robustness(max_new_samples=10, verbosity=1)
Adapts the PCE approximation by increasing robustness. (Intended to combat cross-validation error.)

assert_pce_built()

augment_samples_idist(K , weights=None, fast_sampler=True)
Augments random samples from induced distribution. Typically done via an adaptive refinement procedure.
As such some inputs can be given to customize how the samples are drawn in the context of adaptivity:

K: how many samples to add (required) weights: a discrete probability distribution on

self.index_set.get_indices() that describes how the induced distrubtion is sampled. De-
fault is uniform.

build(model=None, model_output=None, **options)
Builds PCE from sampling and approximation settings.

Parameters

• model – A pointer to a function with the syntax xi —> model(xi), which returns a vector
corresponding to the model evaluated at the stochastic parameter value xi. The input xi
to the model function should be a vector of size self.dim, and the output should be a 1D
numpy array. If model_output is None, this is required. If model_output is given, this is
ignored.

• model_output – A numpy.ndarray corresponding to the output of the model at the sample
locations specified by self.samples. This is required if the input model is None.

Return type
None

build_pce_wlsq()

Performs a (weighted) least squares PCE surrogate using saved samples and model output.
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chase_bulk(delta=0.5, max_new_samples=None, max_new_indices=None, add_rule=None,
mult_rule=None, verbosity=1)

Performs adaptive bulk chasing, which (i) adds the most “important” indices to the polynomial index set,
(ii) takes more samples, (iii) updates the PCE approximation, including statistics and error metrics.

Parameters

• max_new_samples (int) – Maximum number of new samples to add. Defaults to None.

• max_new_indices (int) – Maximum number of new PCE indices to add. Defaults to
None.

• add_rule (int) – Specifies number of samples added as a function of number of added
indices. Nsamples = Nindices + add_rule. Defaults to None.

• mult_rule (float) – Specifies number of samples added as a function of number of added
indices. Nsamples = int(Nindices * add_rule). Defaults to None.

check_distribution()

check_indices()

check_sampling()

Determines if a valid sampling type has been specified.

check_training()

Determines if a valid training type has been specified.

christoffel_weights()

Generates sample weights associated to Christoffel preconditioning.

eval(p, components=None)
Evaluates the PCE at particular parameter locations.

Parameters

• p – An array (satisfying p.shape[1]==self.dim) containing a set of parameter points at which
to evaluate the PCE prediction.

• components – An array of non-negative integers specifying which indices in the model
output to compute. Other indices are ignored. If given as None (default), then all compo-
nents are computed.

Returns
An array containing evaluations (predictions) from the PCE emulator. If the input components
is None, this array is of size ( self.p.shape[0] x self.coefficients.shape[1] ). Otherwise, the
second dimension is of size components.size.

Return type
numpy.ndarray

generate_samples(**kwargs)
Generates sample/experimental design for use in PCE construction.

Parameters
new_samples (array-like, optional) – Specifies samples that must be part of the en-
semble.
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global_derivative_sensitivity(dim_list)
Computes global derivative-based sensitivity indices. For a PCE with respect to a 𝑑-dimensional random
variable 𝑍, then this senstivity index along dimension 𝑖 is defined as

𝑆𝑖 : = 𝐸 [𝑝(𝑍)] =

∫︁
𝑝(𝑧)𝜔(𝑧)𝑑𝑧,

where 𝐸[·] it expectation operator, 𝑝 is the PCE emulator, and 𝜔 is the probability density function for the
random variable 𝑍.

These sensitivity indices measure the average rate-of-change of the PCE response with respect to dimension
𝑖.

Parameters
dim_lists – A list-type iterable with D entries, containing dimensional indices in 0-based
indexing. All entries must be between 0 and self.distribution.dim.

Returns

DxK array, where each row corresponds to the sensitivity index
𝑆𝑖 across all K features of the PCE model.

Return type
S

global_sensitivity(dim_lists=None, interaction_orders=None, vartol=1e-16)
Computes global sensitivity associated to dimensional indices dim_lists from PCE coefficients.

dim_lists should be a list of index lists. The global sensitivity for each index list is returned.

interaction_orders (list): Computes sensitivities corresponding to variable interactions for the specified
orders. E.g., order 2 implies binary interactions, 3 is ternary interactions, [2,3] computes both of these
orders.

The output is len(dim_lists) x self.coefficients.shape[1]

identify_bulk(delta=0.5)
Performs (adaptive) bulk chasing for refining polynomial spaces. Returns the indices associated with a
delta-bulk of a OMP-type indicator.

integration_weights()

Generates sample weights associated to integration.

map_to_model_space(p)
Maps parameter values from standard space to model space.

Parameters
p (array-like) – Samples in standard space.

Returns
Samples in model space

Return type
q (numpy.ndarray)

map_to_standard_space(q)
Maps parameter values from model space to standard space.

Parameters
q (array-like) – Samples in model space.

Returns
Samples in standard space
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Return type
p (numpy.ndarray)

mean()

Returns PCE mean.

Returns

A vector containing the PCE mean, of size equal to the size
of the vector of the model output.

Return type
numpy.ndarray

pce_eval(p, components=None)
Evaluates the PCE at particular parameter locations.

Parameters

• p – An array (satisfying p.shape[1]==self.dim) containing a set of parameter points at which
to evaluate the PCE prediction.

• components – An array of non-negative integers specifying which indices in the model
output to compute. Other indices are ignored. If given as None (default), then all compo-
nents are computed.

Returns
An array containing evaluations (predictions) from the PCE emulator. If the input components
is None, this array is of size ( self.p.shape[0] x self.coefficients.shape[1] ). Otherwise, the
second dimension is of size components.size.

Return type
numpy.ndarray

quantile(q, M=100)
Computes q-quantiles using M-point Monte Carlo sampling.

set_distribution(distribution)
Sets type of probability distribution of random variable.

Parameters
distribution – A ProbabilityDistribution instance specifying the distribution of the ran-
dom variable.

Return type
None

set_indices(index_set)
Sets multi-index set for polynomial approximation.

Parameters
indices – A MultiIndexSet instance specifying the polynomial approximation space.

Return type
None

set_samples(samples)

set_weights()

Sets weights based on assigned samples.
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stdev()

Returns PCE standard deviation

Returns

A vector containing the PCE standard deviation, of size
equal to the size of the vector of the model output.

Return type
numpy.ndarray

total_sensitivity(dim_indices=None, vartol=1e-16)
Computes total sensitivity associated to dimensions dim_indices from PCE coefficients. dim_indices
should be a list-type containing dimension indices.

The output is len(js) x self.coefficients.shape[1]

1.5. API Documentation 59



UncertainSCI, Release 1.0.1

60 Chapter 1. About UncertainSCI



CHAPTER

TWO

CONTRIBUTORS

Jake Bergquist, Dana Brooks, Zexin Liu, Rob MacLeod, Akil Narayan, Sumientra Rampersad, Lindsay Rupp, Jess
Tate, Dan White

61



UncertainSCI, Release 1.0.1

62 Chapter 2. Contributors



CHAPTER

THREE

ACKNOWLEDGEMENTS

This project was supported by grants from the National Institute of Biomedical Imaging and Bioengineering
(U24EB029012) from the National Institutes of Health.

63



UncertainSCI, Release 1.0.1

64 Chapter 3. Acknowledgements



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

65



UncertainSCI, Release 1.0.1

66 Chapter 4. Indices and Tables



CHAPTER

FIVE

BIBLIOGRAPHY

67



UncertainSCI, Release 1.0.1

68 Chapter 5. Bibliography



BIBLIOGRAPHY

[1] Akil Narayan, Zexin Liu, Jake Bergquist, Chantel Charlebois, Sumientra Rampersad, Lindsay Rupp, Dana Brooks,
Dan White, Jess Tate, and Rob S MacLeod. UncertainSCI: uncertainty quantification for computational models
in biomedicine and bioengineering. Available at SSRN 4049696, 2022.

[2] Kyle M. Burk, Akil Narayan, and Joseph A. Orr. Efficient sampling for polynomial chaos-based uncertainty quan-
tification and sensitivity analysis using weighted approximate fekete points. International Journal for Numerical
Methods in Biomedical Engineering, 36(11):e3395, 2020. doi:https://doi.org/10.1002/cnm.3395.

[3] Akil Narayan. Computation of induced orthogonal polynomial distributions. Electronic Transactions on Nu-
merical Analysis, 50:71–97, 2018. arXiv:1704.08465 [math]. URL: https://epub.oeaw.ac.at?arp=0x003a184e,
doi:10.1553/etna_vol50s71.

[4] L. Guo, A. Narayan, L. Yan, and T. Zhou. Weighted Approximate Fekete Points: Sampling for Least-Squares
Polynomial Approximation. SIAM Journal on Scientific Computing, 40(1):A366–A387, 2018. arXiv:1708.01296
[math.NA]. URL: http://epubs.siam.org/doi/abs/10.1137/17M1140960, doi:10.1137/17M1140960.

[5] Albert Cohen and Giovanni Migliorati. Optimal weighted least-squares methods. SMAI Journal of Computational
Mathematics, 3:181–203, 2017. arxiv:1608.00512 [math.NA]. doi:10.5802/smai-jcm.24.

[6] S.K. Gupta and W.V. Harper. Sensitivity/Uncertainty Analysis of a Borehole Scenario Comparing Latin Hyper-
cube Sampling and Deterministic Sensitivity Approaches. Technical Report BMI/ONWI-516, Battelle Memorial
Institute, Office of Nuclear Waste Isolation, 1983.

[7] Jake Bergquist, Brian Zenger, Lindsay Rupp, Akil Narayan, Jess Tate, and Rob MacLeod. Uncertainty quantifi-
cation in simulations of myocardial ischemia. In Computing in Cardiology, volume 48. September 2021.

[8] Lindsay C Rupp, Zexin Liu, Jake A Bergquist, Sumientra Rampersad, Dan White, Jess D Tate, Dana H. Brooks,
Akil Narayan, and Rob S. MacLeod. Using uncertainSCI to quantify uncertainty in cardiac simulations. In Com-
puting in Cardiology, volume 47. September 2020.

[9] Lindsay C Rupp, Jake A Bergquist, Brian Zenger, Karli Gillette, Akil Narayan, Jess Tate, Gernot Plank, and Rob S.
MacLeod. The role of myocardial fiber direction in epicardial activation patterns via uncertainty quantification.
In Computing in Cardiology, volume 48. September 2021.

[10] Jess D. Tate, Wilson W. Good, Nejib Zemzemi, Machteld Boonstra, Peter van Dam, Dana H. Brooks, Akil
Narayan, and Rob S. MacLeod. Uncertainty quantification of the effects of segmentation variability in ECGI.
In Functional Imaging and Modeling of the Heart, pages 515–522. Springer-Cham, Palo Alto, USA, 2021.
doi:https://doi.org/10.1007/978-3-030-78710-3_49.

[11] Jess Tate, Sumientra Rampersad, Chantel Charlebois, Zexin Liu, Jake Bergquist, Dan White, Lindsay Rupp, Dana
Brooks, Akil Narayan, and Rob MacLeod. Uncertainty quantification in brain stimulation using uncertainSCI.
Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 14(6):1659–1660, January
2021. URL: https://doi.org/10.1016/j.brs.2021.10.226, doi:10.1016/j.brs.2021.10.226.

69

https://doi.org/https://doi.org/10.1002/cnm.3395
https://epub.oeaw.ac.at?arp=0x003a184e
https://doi.org/10.1553/etna_vol50s71
http://epubs.siam.org/doi/abs/10.1137/17M1140960
https://doi.org/10.1137/17M1140960
https://doi.org/10.5802/smai-jcm.24
https://doi.org/https://doi.org/10.1007/978-3-030-78710-3_49
https://doi.org/10.1016/j.brs.2021.10.226
https://doi.org/10.1016/j.brs.2021.10.226


UncertainSCI, Release 1.0.1

[12] Jess D Tate, Nejib Zemzemi, Shireen Elhabian, Beáta Ondru\u sová, Machteld Boonstra, Peter van Dam, Akil
Narayan, Dana H Brooks, and Rob S MacLeod. Segmentation uncertainty quantification in cardiac propagation
models. In 2022 Computing in Cardiology (CinC), volume 498, 1–4. 2022. doi:10.22489/CinC.2022.419.

[1] Akil Narayan, Zexin Liu, Jake Bergquist, Chantel Charlebois, Sumientra Rampersad, Lindsay Rupp, Dana Brooks,
Dan White, Jess Tate, and Rob S MacLeod. UncertainSCI: uncertainty quantification for computational models
in biomedicine and bioengineering. Available at SSRN 4049696, 2022.

[2] Kyle M. Burk, Akil Narayan, and Joseph A. Orr. Efficient sampling for polynomial chaos-based uncertainty quan-
tification and sensitivity analysis using weighted approximate fekete points. International Journal for Numerical
Methods in Biomedical Engineering, 36(11):e3395, 2020. doi:https://doi.org/10.1002/cnm.3395.

[3] Akil Narayan. Computation of induced orthogonal polynomial distributions. Electronic Transactions on Nu-
merical Analysis, 50:71–97, 2018. arXiv:1704.08465 [math]. URL: https://epub.oeaw.ac.at?arp=0x003a184e,
doi:10.1553/etna_vol50s71.

[4] L. Guo, A. Narayan, L. Yan, and T. Zhou. Weighted Approximate Fekete Points: Sampling for Least-Squares
Polynomial Approximation. SIAM Journal on Scientific Computing, 40(1):A366–A387, 2018. arXiv:1708.01296
[math.NA]. URL: http://epubs.siam.org/doi/abs/10.1137/17M1140960, doi:10.1137/17M1140960.

[5] Albert Cohen and Giovanni Migliorati. Optimal weighted least-squares methods. SMAI Journal of Computational
Mathematics, 3:181–203, 2017. arxiv:1608.00512 [math.NA]. doi:10.5802/smai-jcm.24.

[6] S.K. Gupta and W.V. Harper. Sensitivity/Uncertainty Analysis of a Borehole Scenario Comparing Latin Hyper-
cube Sampling and Deterministic Sensitivity Approaches. Technical Report BMI/ONWI-516, Battelle Memorial
Institute, Office of Nuclear Waste Isolation, 1983.

[7] Jake Bergquist, Brian Zenger, Lindsay Rupp, Akil Narayan, Jess Tate, and Rob MacLeod. Uncertainty quantifi-
cation in simulations of myocardial ischemia. In Computing in Cardiology, volume 48. September 2021.

[8] Lindsay C Rupp, Zexin Liu, Jake A Bergquist, Sumientra Rampersad, Dan White, Jess D Tate, Dana H. Brooks,
Akil Narayan, and Rob S. MacLeod. Using uncertainSCI to quantify uncertainty in cardiac simulations. In Com-
puting in Cardiology, volume 47. September 2020.

[9] Lindsay C Rupp, Jake A Bergquist, Brian Zenger, Karli Gillette, Akil Narayan, Jess Tate, Gernot Plank, and Rob S.
MacLeod. The role of myocardial fiber direction in epicardial activation patterns via uncertainty quantification.
In Computing in Cardiology, volume 48. September 2021.

[10] Jess D. Tate, Wilson W. Good, Nejib Zemzemi, Machteld Boonstra, Peter van Dam, Dana H. Brooks, Akil
Narayan, and Rob S. MacLeod. Uncertainty quantification of the effects of segmentation variability in ECGI.
In Functional Imaging and Modeling of the Heart, pages 515–522. Springer-Cham, Palo Alto, USA, 2021.
doi:https://doi.org/10.1007/978-3-030-78710-3_49.

[11] Jess Tate, Sumientra Rampersad, Chantel Charlebois, Zexin Liu, Jake Bergquist, Dan White, Lindsay Rupp, Dana
Brooks, Akil Narayan, and Rob MacLeod. Uncertainty quantification in brain stimulation using uncertainSCI.
Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 14(6):1659–1660, January
2021. URL: https://doi.org/10.1016/j.brs.2021.10.226, doi:10.1016/j.brs.2021.10.226.

[12] Jess D Tate, Nejib Zemzemi, Shireen Elhabian, Beáta Ondru\u sová, Machteld Boonstra, Peter van Dam, Akil
Narayan, Dana H Brooks, and Rob S MacLeod. Segmentation uncertainty quantification in cardiac propagation
models. In 2022 Computing in Cardiology (CinC), volume 498, 1–4. 2022. doi:10.22489/CinC.2022.419.

70 Bibliography

https://doi.org/10.22489/CinC.2022.419
https://doi.org/https://doi.org/10.1002/cnm.3395
https://epub.oeaw.ac.at?arp=0x003a184e
https://doi.org/10.1553/etna_vol50s71
http://epubs.siam.org/doi/abs/10.1137/17M1140960
https://doi.org/10.1137/17M1140960
https://doi.org/10.5802/smai-jcm.24
https://doi.org/https://doi.org/10.1007/978-3-030-78710-3_49
https://doi.org/10.1016/j.brs.2021.10.226
https://doi.org/10.1016/j.brs.2021.10.226
https://doi.org/10.22489/CinC.2022.419


PYTHON MODULE INDEX

u
UncertainSCI.distributions, 47
UncertainSCI.families, 53
UncertainSCI.indexing, 46
UncertainSCI.opoly1d, 50
UncertainSCI.pce, 55

71



UncertainSCI, Release 1.0.1

72 Python Module Index



INDEX

A
adapt_expressivity() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
55

adapt_robustness() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
55

alpha (UncertainSCI.distributions.BetaDistribution at-
tribute), 48

apply_jacobi_matrix() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 50

assert_pce_built() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
55

augment_samples_idist() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
55

B
beta (UncertainSCI.distributions.BetaDistribution

attribute), 48
BetaDistribution (class in Uncertain-

SCI.distributions), 47
build() (UncertainSCI.pce.PolynomialChaosExpansion

method), 55
build_pce_wlsq() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
55

C
canonical_connection() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 50

canonical_connection_inverse() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 50

chase_bulk() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
55

check_distribution() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),

56
check_indices() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
56

check_sampling() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
56

check_training() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
56

christoffel_function() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 50

christoffel_weights() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
56

cov() (UncertainSCI.distributions.BetaDistribution
method), 48

cov() (UncertainSCI.distributions.DiscreteUniformDistribution
method), 49

cov() (UncertainSCI.distributions.ExponentialDistribution
method), 48

cov() (UncertainSCI.distributions.NormalDistribution
method), 49

D
derivative_expansion() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 50

dim (UncertainSCI.distributions.BetaDistribution at-
tribute), 48

DiscreteChebyshevPolynomials (class in Uncertain-
SCI.families), 53

DiscreteUniformDistribution (class in Uncertain-
SCI.distributions), 49

E
eval() (UncertainSCI.families.DiscreteChebyshevPolynomials

method), 53
eval() (UncertainSCI.opoly1d.OrthogonalPolynomialBasis1D

method), 51

73



UncertainSCI, Release 1.0.1

eval() (UncertainSCI.pce.PolynomialChaosExpansion
method), 56

eval_1d() (UncertainSCI.families.JacobiPolynomials
method), 53

eval_nd() (UncertainSCI.families.JacobiPolynomials
method), 53

ExponentialDistribution (class in Uncertain-
SCI.distributions), 48

F
fidistinv() (Uncertain-

SCI.families.DiscreteChebyshevPolynomials
method), 53

fidistinv() (Uncertain-
SCI.families.JacobiPolynomials method),
53

fidistinv_jacobi_setup() (Uncertain-
SCI.families.JacobiPolynomials method),
53

G
gauss_quadrature() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

gauss_radau_quadrature() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

generate_samples() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
56

get_indices() (Uncertain-
SCI.indexing.HyperbolicCrossSet method),
46

get_indices() (UncertainSCI.indexing.LpSet method),
46

get_indices() (UncertainSCI.indexing.TotalDegreeSet
method), 46

global_derivative_sensitivity() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
56

global_sensitivity() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
57

H
HermitePolynomials (class in UncertainSCI.families),

53
HyperbolicCrossSet (class in UncertainSCI.indexing),

46

I
identify_bulk() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
57

idist() (UncertainSCI.families.DiscreteChebyshevPolynomials
method), 53

idist() (UncertainSCI.families.HermitePolynomials
method), 53

idist() (UncertainSCI.families.JacobiPolynomials
method), 53

idist() (UncertainSCI.families.LaguerrePolynomials
method), 53

idist_medapprox() (Uncertain-
SCI.families.JacobiPolynomials method),
53

idist_medapprox() (Uncertain-
SCI.families.LaguerrePolynomials method),
53

idistinv() (Uncertain-
SCI.families.DiscreteChebyshevPolynomials
method), 53

idistinv() (Uncertain-
SCI.families.HermitePolynomials method),
53

idistinv() (UncertainSCI.families.JacobiPolynomials
method), 53

idistinv() (Uncertain-
SCI.families.LaguerrePolynomials method),
53

integration_weights() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
57

J
jacobi_matrix() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

jacobi_matrix_driver() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

JacobiPolynomials (class in UncertainSCI.families),
53

L
LaguerrePolynomials (class in Uncertain-

SCI.families), 53
leading_coefficient() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

LpSet (class in UncertainSCI.indexing), 46

M
map_to_model_space() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
57

map_to_standard_space() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
57

74 Index



UncertainSCI, Release 1.0.1

MC_samples() (Uncertain-
SCI.distributions.BetaDistribution method),
48

MC_samples() (Uncertain-
SCI.distributions.DiscreteUniformDistribution
method), 49

MC_samples() (Uncertain-
SCI.distributions.ExponentialDistribution
method), 48

MC_samples() (Uncertain-
SCI.distributions.NormalDistribution method),
49

MC_samples() (Uncertain-
SCI.distributions.TensorialDistribution
method), 49

mean() (UncertainSCI.distributions.BetaDistribution
method), 48

mean() (UncertainSCI.distributions.DiscreteUniformDistribution
method), 49

mean() (UncertainSCI.distributions.ExponentialDistribution
method), 49

mean() (UncertainSCI.distributions.NormalDistribution
method), 49

mean() (UncertainSCI.pce.PolynomialChaosExpansion
method), 58

meanloc_to_lbd() (Uncertain-
SCI.distributions.ExponentialDistribution
method), 49

meanstdev_to_alphabeta() (Uncertain-
SCI.distributions.BetaDistribution method),
48

module
UncertainSCI.distributions, 47
UncertainSCI.families, 53
UncertainSCI.indexing, 46
UncertainSCI.opoly1d, 50
UncertainSCI.pce, 55

N
NormalDistribution (class in Uncertain-

SCI.distributions), 49

O
OrthogonalPolynomialBasis1D (class in Uncertain-

SCI.opoly1d), 50

P
pce_eval() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
58

pdf() (UncertainSCI.distributions.BetaDistribution
method), 48

pdf() (UncertainSCI.distributions.ExponentialDistribution
method), 49

pdf() (UncertainSCI.distributions.NormalDistribution
method), 49

pmf() (UncertainSCI.distributions.DiscreteUniformDistribution
method), 49

PolynomialChaosExpansion (class in Uncertain-
SCI.pce), 55

polys (UncertainSCI.distributions.BetaDistribution at-
tribute), 48

Q
qpoly1d_eval() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

quantile() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
58

R
r_eval() (UncertainSCI.opoly1d.OrthogonalPolynomialBasis1D

method), 51
recurrence() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 51

recurrence_driver() (Uncertain-
SCI.families.DiscreteChebyshevPolynomials
method), 54

recurrence_driver() (Uncertain-
SCI.families.HermitePolynomials method),
53

recurrence_driver() (Uncertain-
SCI.families.JacobiPolynomials method),
53

recurrence_driver() (Uncertain-
SCI.families.LaguerrePolynomials method),
53

recurrence_driver() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 52

S
s_eval() (UncertainSCI.opoly1d.OrthogonalPolynomialBasis1D

method), 52
set_distribution() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
58

set_indices() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
58

set_samples() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
58

set_weights() (Uncertain-
SCI.pce.PolynomialChaosExpansion method),
58

Index 75



UncertainSCI, Release 1.0.1

stdev() (UncertainSCI.distributions.BetaDistribution
method), 48

stdev() (UncertainSCI.distributions.DiscreteUniformDistribution
method), 49

stdev() (UncertainSCI.distributions.ExponentialDistribution
method), 49

stdev() (UncertainSCI.distributions.NormalDistribution
method), 49

stdev() (UncertainSCI.pce.PolynomialChaosExpansion
method), 58

T
TensorialDistribution (class in Uncertain-

SCI.distributions), 49
total_sensitivity() (Uncertain-

SCI.pce.PolynomialChaosExpansion method),
59

TotalDegreeSet (class in UncertainSCI.indexing), 46
tuple_product() (Uncertain-

SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 52

tuple_product_generator() (Uncertain-
SCI.opoly1d.OrthogonalPolynomialBasis1D
method), 52

U
UncertainSCI.distributions

module, 47
UncertainSCI.families

module, 53
UncertainSCI.indexing

module, 46
UncertainSCI.opoly1d

module, 50
UncertainSCI.pce

module, 55

76 Index


	About UncertainSCI
	Getting Started with UncertainSCI
	System Requirements
	Getting UncertainSCI
	Installing UncertainSCI From Source

	UncertainSCI Overview
	Before Using UncertainSCI
	PCE computation time

	Running UncertainSCI
	Running UncertainSCI for Sample Generation
	Running Parameter Samples for Model Outputs
	PCE and the Output Statistics


	Running UncertainSCI Demos

	Support
	Questions?
	Bugs and Requests

	Tutorials
	Simple Example Showing UQ With PCE
	Model Parameter setup
	Distributions
	Polynomial Order

	Forward Model
	Running PCE in UncertainSCI
	Create PCE object and Build Sample Set
	Run Parameter Sets in the Forward Model
	Build PCE from Model Outputs
	Compute Output Statistics

	Output Visualizations

	Demos
	Simple example with boxplots
	Overview
	Building the emulator
	The forward model
	Parameter distributions
	Defining polynomial order
	PCE emulators

	Querying the emulators
	Boxplots

	PCE Statistics
	Building PCE emulators


	Adaptive PCE
	Adaptive PCE Setup
	Define Forward model
	Parameter Distributions
	Initial Expressivity of the PCE

	Running Adaptive PCE
	Output Statistics
	Monte Carlo Statistics
	Visualize Statistics
	Plotting Setup
	Single Domain Plot Comparison
	Side-by-Side Domain Plot Comparison
	Parameter Sensitivity Estimated with PCE
	Regression Plots


	Built-in forward models
	Overview
	Algebraic models
	Ishigami function
	Borehole function

	Differential equation models
	ODE boundary value problem


	Using UncertainSCI with External Simulation Software
	SCIRun/UncertainSCI ECG uncertainty due to cardiac postion

	Defining random parameters
	Overview
	Types of distributions
	Beta Distribution
	Normal distribution
	Exponential distribution
	Discrete uniform distribution
	Non-parametric distributions


	Template for Tutorial
	Overview
	Software Requirements
	Overview Subsection


	Chapter Name
	Section
	Subsection

	Figures
	Math
	Citations
	Snippets
	Links
	Tables
	Referencing Sphynx



	Developer Documentation
	Contribution Guide
	Community Support
	Bugs and Features
	Make a Tutorial
	Contribute Code
	Fork Repo
	Pull Requests

	Syle Guide
	Python
	Demos and Usecases
	Testing


	Making Tutorials
	Overview
	Software requirements
	UncertainSCI
	Dependencies and Development Tools
	Creating Your UncertainSCI Fork


	Files Needed for a New Tutorial
	Overview of Files Needed for a Tutorial
	Markdown File
	Added Figures
	Additional Files
	Linking to New Tutorial

	Testing Documentation
	Testing Locally
	Installing Shpinx
	Building Documentation

	Testing Online

	Adding Content
	Figures
	Math
	Citations
	Snippets
	Links
	Tables
	Referencing Sphinx

	Content Guide
	Supplemental Materials
	Example Scripts
	Movies
	Youtube
	Vimeo

	Datasets
	Bibliography



	API Documentation
	Polynomial Spaces
	Distributions
	Introduction

	Polynomial Families
	Polynomial Chaos Expansions
	Introduction
	PolynomialChaosExpansion
	Attributes:




	Contributors
	Acknowledgements
	Indices and Tables
	Bibliography
	Bibliography
	Python Module Index
	Index

